Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Leturcq, Renaud

  • Google
  • 4
  • 23
  • 85

Luxembourg Institute of Science and Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022How much gallium do we need for a p-type Cu(In,Ga)Se<sub>2</sub>?4citations
  • 2022Role of ZnO and MgO interfaces on the growth and optoelectronic properties of atomic layer deposited Zn1- x MgxO films5citations
  • 2020Fully Transparent Friction‐Modulation Haptic Device Based on Piezoelectric Thin Film37citations
  • 2017Invisible electronics: Metastable Cu-vacancies chain defects for highly conductive p-type transparent oxide39citations

Places of action

Chart of shared publication
Poeira, Ricardo Gonçalinho
1 / 3 shared
Weiss, Thomas Paul
1 / 5 shared
Redinger, Alex
1 / 9 shared
Martin Lanzoni, Evandro
1 / 9 shared
Ramírez, Omar
1 / 2 shared
Siebentritt, Susanne
1 / 18 shared
Gnanasambandan, Poorani
1 / 1 shared
Adjeroud, Noureddine
1 / 7 shared
Rupin, Matthieu
1 / 1 shared
Godard, Nicolas
1 / 2 shared
Girod, Stéphanie
1 / 3 shared
Glinsek, Sebastjan
1 / 4 shared
Mahjoub, Mohamed Aymen
1 / 1 shared
Chappaz, Cédrick
1 / 1 shared
Schenk, Tony
1 / 8 shared
Chemin, Jeanbaptiste
1 / 1 shared
Defay, Emmanuel
1 / 6 shared
Klein, Sébastien
1 / 2 shared
Valle, Nathalie
1 / 15 shared
Lenoble, Damien
1 / 11 shared
Lunca Popa, Petru
1 / 3 shared
Nukala, Pavan
1 / 7 shared
Crêpellière, Jonathan
1 / 2 shared
Chart of publication period
2022
2020
2017

Co-Authors (by relevance)

  • Poeira, Ricardo Gonçalinho
  • Weiss, Thomas Paul
  • Redinger, Alex
  • Martin Lanzoni, Evandro
  • Ramírez, Omar
  • Siebentritt, Susanne
  • Gnanasambandan, Poorani
  • Adjeroud, Noureddine
  • Rupin, Matthieu
  • Godard, Nicolas
  • Girod, Stéphanie
  • Glinsek, Sebastjan
  • Mahjoub, Mohamed Aymen
  • Chappaz, Cédrick
  • Schenk, Tony
  • Chemin, Jeanbaptiste
  • Defay, Emmanuel
  • Klein, Sébastien
  • Valle, Nathalie
  • Lenoble, Damien
  • Lunca Popa, Petru
  • Nukala, Pavan
  • Crêpellière, Jonathan
OrganizationsLocationPeople

article

How much gallium do we need for a p-type Cu(In,Ga)Se<sub>2</sub>?

  • Poeira, Ricardo Gonçalinho
  • Weiss, Thomas Paul
  • Redinger, Alex
  • Martin Lanzoni, Evandro
  • Leturcq, Renaud
  • Ramírez, Omar
  • Siebentritt, Susanne
Abstract

<jats:p> Doping in the chalcopyrite Cu(In,Ga)Se<jats:sub>2</jats:sub> is determined by intrinsic point defects. In the ternary CuInSe<jats:sub>2</jats:sub>, both N-type conductivity and P-type conductivity can be obtained depending on the growth conditions and stoichiometry: N-type is obtained when grown Cu-poor, Se-poor, and alkali-free. CuGaSe<jats:sub>2</jats:sub>, on the other hand, is found to be always a P-type semiconductor that seems to resist all kinds of N-type doping, no matter whether it comes from native defects or extrinsic impurities. In this work, we study the N-to-P transition in Cu-poor Cu(In,Ga)Se<jats:sub>2</jats:sub> single crystals in dependence of the gallium content. Our results show that Cu(In,Ga)Se<jats:sub>2</jats:sub> can still be grown as an N-type semiconductor until the gallium content reaches the critical concentration of 15%–19%, where the N-to-P transition occurs. Furthermore, trends in the Seebeck coefficient and activation energies extracted from temperature-dependent conductivity measurements demonstrate that the carrier concentration drops by around two orders of magnitude near the transition concentration. Our proposed model explains the N-to-P transition based on the differences in formation energies of donor and acceptor defects caused by the addition of gallium. </jats:p>

Topics
  • impedance spectroscopy
  • single crystal
  • activation
  • Gallium
  • point defect
  • p-type semiconductor
  • n-type semiconductor