Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Genenko, Y. A.

  • Google
  • 2
  • 11
  • 177

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Dynamic scaling properties of multistep polarization response in ferroelectricscitations
  • 2009Domains in Ferroelectric Nanodots177citations

Places of action

Chart of shared publication
Wang, K.
1 / 27 shared
Koruza, Jurij
1 / 50 shared
Zhukov, S.
1 / 1 shared
Zhang, M. H.
1 / 1 shared
Catalan, G.
1 / 20 shared
Byrne, D.
1 / 3 shared
Gregg, J. M.
1 / 20 shared
Wu, G. S.
1 / 1 shared
Scott, J. F.
1 / 83 shared
Webber, Kyle G.
1 / 145 shared
Schilling, A.
1 / 19 shared
Chart of publication period
2022
2009

Co-Authors (by relevance)

  • Wang, K.
  • Koruza, Jurij
  • Zhukov, S.
  • Zhang, M. H.
  • Catalan, G.
  • Byrne, D.
  • Gregg, J. M.
  • Wu, G. S.
  • Scott, J. F.
  • Webber, Kyle G.
  • Schilling, A.
OrganizationsLocationPeople

article

Dynamic scaling properties of multistep polarization response in ferroelectrics

  • Genenko, Y. A.
  • Wang, K.
  • Koruza, Jurij
  • Zhukov, S.
  • Zhang, M. H.
Abstract

<p>Ferroelectrics are multifunctional smart materials finding applications in sensor technology, micromechanical actuation, digital information storage, etc. Their most fundamental property is the ability of polarization switching under an applied electric field. In particular, understanding of switching kinetics is essential for digital information storage. In this regard, scaling properties of the temporal polarization response are well-known for 180°-switching processes in ferroelectrics characterized by a unique field-dependent local switching time. Unexpectedly, these properties are now observed in multiaxial polycrystalline ferroelectrics, exhibiting a number of parallel and sequential non-180°-switching processes with distinct switching times. This behavior can be explained by a combination of the multistep stochastic mechanism and the inhomogeneous field mechanism models of polarization reversal. Scaling properties are predicted for polycrystalline ferroelectrics of tetragonal, rhombohedral, and orthorhombic symmetries and are exemplarily demonstrated by the measurements of polarization kinetics in (K,Na)NbO3-based ferroelectric ceramic over a timescale of 7 orders of magnitude. Dynamic scaling properties allow insight into the microscopic switching mechanisms, on the one hand, and into statistical material characteristics, on the other hand, thereby providing the description of temporal polarization with high accuracy. The gained deeper insight into the mechanisms of multistep polarization switching is crucial for future ultrafast and multilevel digital information storage.</p>

Topics
  • impedance spectroscopy
  • ceramic