Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Griffiths, Thomas A.

  • Google
  • 1
  • 8
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Development of a new, fully automated system for electron backscatter diffraction (EBSD)-based large volume three-dimensional microstructure mapping using serial sectioning by mechanical polishing, and its application to the analysis of special boundaries in 316L stainless steel11citations

Places of action

Chart of shared publication
Konijnenberg, Peter J.
1 / 1 shared
Hartke, Samuel
1 / 1 shared
Kawano-Miyata, Kaori
1 / 1 shared
Taniyama, Akira
1 / 1 shared
Herbig, Michael
1 / 21 shared
Sano, Naoyuki
1 / 1 shared
Zaefferer, Stefan
1 / 26 shared
Gonzalez, Ivan
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Konijnenberg, Peter J.
  • Hartke, Samuel
  • Kawano-Miyata, Kaori
  • Taniyama, Akira
  • Herbig, Michael
  • Sano, Naoyuki
  • Zaefferer, Stefan
  • Gonzalez, Ivan
OrganizationsLocationPeople

article

Development of a new, fully automated system for electron backscatter diffraction (EBSD)-based large volume three-dimensional microstructure mapping using serial sectioning by mechanical polishing, and its application to the analysis of special boundaries in 316L stainless steel

  • Konijnenberg, Peter J.
  • Hartke, Samuel
  • Kawano-Miyata, Kaori
  • Griffiths, Thomas A.
  • Taniyama, Akira
  • Herbig, Michael
  • Sano, Naoyuki
  • Zaefferer, Stefan
  • Gonzalez, Ivan
Abstract

We report the development of a fully automatic large-volume 3D electron backscatter diffraction (EBSD) system (ELAVO 3D), consisting of a scanning electron microscope (ZEISS crossbeam XB 1540) with a dedicated sample holder, an adapted polishing automaton (Saphir X-change, QATM), a collaborative robotic arm (Universal Robots UR5), and several in-house built devices. The whole system is orchestrated by an in-house designed software, which is also able to track the process and report errors. Except for the case of error, the system runs without any user interference. For the measurement of removal thickness, the samples are featured with markers put on the perpendicular lateral surface, cut by plasma focused ion beam (PFIB) milling. The individual effects of both 1  μm diamond suspension and oxide polishing suspension polishing were studied in detail. Coherent twin grain boundaries (GBs) were used as an internal standard to check the removal rates measured by the side markers. The two methods for Z-spacing measurements disagreed by about 10%, and the inaccurate calibration of the PFIB system was found to be the most probable reason for this discrepancy. The angular accuracy of the system was determined to be ∼2.5°, which can be significantly improved with more accurate Z-spacing measurements. When reconstructed grain boundary meshes are sufficiently smoothed, an angular resolution of ±4° is achieved. In a 3D EBSD dataset of a size of 587 × 476 × 72  μm3, we focused on the investigation of coincidence site lattice ∑9 GBs. While bearing predominantly a pure tilt character, ∑9 GBs can be categorized into three groups based on correlative 3D morphologies and crystallography.

Topics
  • impedance spectroscopy
  • surface
  • grain
  • stainless steel
  • grain boundary
  • grinding
  • milling
  • focused ion beam
  • electron backscatter diffraction
  • polishing
  • sectioning