Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Corre, Vincent Le

  • Google
  • 9
  • 54
  • 1236

University of Southern Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Ion-induced field screening as a dominant factor in perovskite solar cell operational stability87citations
  • 2022Revealing the doping density in perovskite solar cells and its impact on device performance45citations
  • 2022Quantification of Efficiency Losses Due to Mobile Ions in Perovskite Solar Cells via Fast Hysteresis Measurements70citations
  • 2021Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskites via Space-Charge-Limited Current Measurements484citations
  • 2021Understanding Dark Current-Voltage Characteristics in Metal-Halide Perovskite Single Crystals51citations
  • 2021Universal Current Losses in Perovskite Solar Cells Due to Mobile Ions100citations
  • 2020Toward Understanding Space-Charge Limited Current Measurements on Metal Halide Perovskites320citations
  • 2018Carrier Transport and Recombination in Efficient “All-Small-Molecule” Solar Cells with the Nonfullerene Acceptor IDTBR70citations
  • 2017Numerical modeling of the effective ductile damage of macroporous alumina9citations

Places of action

Chart of shared publication
Lang, Felix
3 / 19 shared
Diekmann, Jonas
2 / 6 shared
Neher, Dieter
3 / 64 shared
Gutierrez-Partida, Emilio
3 / 12 shared
Thiesbrummel, Jarla
3 / 6 shared
Caprioglio, Pietro
2 / 17 shared
Stolterfoht, Martin
3 / 29 shared
Peña-Camargo, Francisco
3 / 9 shared
Warby, Jonathan
3 / 9 shared
Albrecht, Steve
2 / 32 shared
Snaith, Henry J.
5 / 58 shared
Perdigón-Toro, Lorena
2 / 6 shared
Futscher, Moritz H.
1 / 15 shared
Peters, Karol Pawel
1 / 2 shared
Tokmoldin, Nurlan
1 / 3 shared
Lim, Jongchul
3 / 11 shared
Ball, James M.
2 / 8 shared
Tambouli, Omar El
1 / 1 shared
Koster, Lja
3 / 32 shared
Duijnstee, Elisabeth A.
3 / 7 shared
Johnston, Michael B.
1 / 47 shared
Farrar, Michael D.
1 / 3 shared
Grischek, Max
1 / 6 shared
Yang, Fengjiu
1 / 5 shared
Mahesh, Suhas
1 / 5 shared
Beaujuge, Pierre M.
1 / 4 shared
Kan, Zhipeng
1 / 4 shared
Lopatin, Sergei
1 / 2 shared
Liu, Shengjian
1 / 1 shared
Toney, Michael F.
1 / 30 shared
Babics, Maxime
1 / 6 shared
Zhang, Weimin
1 / 13 shared
Savikhin, Victoria
1 / 6 shared
Mcculloch, Iain
1 / 44 shared
Firdaus, Yuliar
1 / 8 shared
Liang, Ru Ze
1 / 1 shared
Moreaud, Maxime
1 / 7 shared
Brusselle-Dupend, Nadège
1 / 5 shared
Chart of publication period
2024
2022
2021
2020
2018
2017

Co-Authors (by relevance)

  • Lang, Felix
  • Diekmann, Jonas
  • Neher, Dieter
  • Gutierrez-Partida, Emilio
  • Thiesbrummel, Jarla
  • Caprioglio, Pietro
  • Stolterfoht, Martin
  • Peña-Camargo, Francisco
  • Warby, Jonathan
  • Albrecht, Steve
  • Snaith, Henry J.
  • Perdigón-Toro, Lorena
  • Futscher, Moritz H.
  • Peters, Karol Pawel
  • Tokmoldin, Nurlan
  • Lim, Jongchul
  • Ball, James M.
  • Tambouli, Omar El
  • Koster, Lja
  • Duijnstee, Elisabeth A.
  • Johnston, Michael B.
  • Farrar, Michael D.
  • Grischek, Max
  • Yang, Fengjiu
  • Mahesh, Suhas
  • Beaujuge, Pierre M.
  • Kan, Zhipeng
  • Lopatin, Sergei
  • Liu, Shengjian
  • Toney, Michael F.
  • Babics, Maxime
  • Zhang, Weimin
  • Savikhin, Victoria
  • Mcculloch, Iain
  • Firdaus, Yuliar
  • Liang, Ru Ze
  • Moreaud, Maxime
  • Brusselle-Dupend, Nadège
OrganizationsLocationPeople

article

Revealing the doping density in perovskite solar cells and its impact on device performance

  • Corre, Vincent Le
Abstract

<jats:p> Traditional inorganic semiconductors can be electronically doped with high precision. Conversely, there is still conjecture regarding the assessment of the electronic doping density in metal-halide perovskites, not to mention of a control thereof. This paper presents a multifaceted approach to determine the electronic doping density for a range of different lead-halide perovskite systems. Optical and electrical characterization techniques, comprising intensity-dependent and transient photoluminescence, AC Hall effect, transfer-length-methods, and charge extraction measurements were instrumental in quantifying an upper limit for the doping density. The obtained values are subsequently compared to the electrode charge per cell volume under short-circuit conditions ([Formula: see text]), which amounts to roughly 10<jats:sup>16</jats:sup> cm<jats:sup>−3</jats:sup>. This figure of merit represents the critical limit below which doping-induced charges do not influence the device performance. The experimental results consistently demonstrate that the doping density is below this critical threshold (∼10<jats:sup>12</jats:sup> cm<jats:sup>−3</jats:sup>, which means ≪ [Formula: see text]) for all common lead-based metal-halide perovskites. Nevertheless, although the density of doping-induced charges is too low to redistribute the built-in voltage in the perovskite active layer, mobile ions are present in sufficient quantities to create space-charge-regions in the active layer, reminiscent of doped pn-junctions. These results are well supported by drift–diffusion simulations, which confirm that the device performance is not affected by such low doping densities. </jats:p>

Topics
  • density
  • perovskite
  • impedance spectroscopy
  • photoluminescence
  • simulation
  • extraction
  • semiconductor