People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Levchenko, Khrystyna O.
University of Vienna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Magnetic anisotropy and GGG substrate stray field in YIG films down to millikelvin temperaturescitations
- 2023Impact of Bismuth Incorporation into (Ga,Mn)As Dilute Ferromagnetic Semiconductor on Its Magnetic Properties and Magnetoresistancecitations
- 2022Fast long-wavelength exchange spin waves in partially-compensated Ga:YIGcitations
- 2021Engineered magnetization and exchange stiffness in direct-write Co-Fe nanoelementscitations
Places of action
Organizations | Location | People |
---|
article
Fast long-wavelength exchange spin waves in partially-compensated Ga:YIG
Abstract
Spin waves in yttrium iron garnet (YIG) nano-structures attract increasing attention from the perspective of novel magnon-based data processing applications. For short wavelengths needed in small-scale devices, the group velocity is directly proportional to the spin-wave exchange stiffness constant λex. Using wave vector resolved Brillouin light scattering spectroscopy, we directly measure λex in Ga-substituted YIG thin films and show that it is about three times larger than for pure YIG. Consequently, the spin-wave group velocity overcomes the one in pure YIG for wavenumbers k > 4 rad/μm, and the ratio between the velocities reaches a constant value of around 3.4 for all k > 20 rad/μm. As revealed by vibrating-sample magnetometry and ferromagnetic resonance spectroscopy, Ga:YIG films with thicknesses down to 59 nm have a low Gilbert damping (α<10−3), a decreased saturation magnetization μ0MS≈20 mT, and a pronounced out-of-plane uniaxial anisotropy of about μ0Hu1≈95 mT, which leads to an out-of-plane easy axis. Thus, Ga:YIG opens access to fast and isotropic spin-wave transport for all wavelengths in nano-scale systems independently of dipolar effects.