Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kolodinski, Sabine

  • Google
  • 1
  • 8
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Optimization of LPCVD phosphorous-doped SiGe thin films for CMOS-compatible thermoelectric applications15citations

Places of action

Chart of shared publication
Kühnel, Kati
1 / 6 shared
Schwinge, Caroline
1 / 3 shared
Wagner-Reetz, Maik
1 / 4 shared
Biedermann, Kati
1 / 2 shared
Wiatr, Maciej
1 / 1 shared
Weinreich, Wenke
1 / 10 shared
Gerlach, Gerald
1 / 12 shared
Roy, Lisa
1 / 6 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Kühnel, Kati
  • Schwinge, Caroline
  • Wagner-Reetz, Maik
  • Biedermann, Kati
  • Wiatr, Maciej
  • Weinreich, Wenke
  • Gerlach, Gerald
  • Roy, Lisa
OrganizationsLocationPeople

article

Optimization of LPCVD phosphorous-doped SiGe thin films for CMOS-compatible thermoelectric applications

  • Kühnel, Kati
  • Schwinge, Caroline
  • Wagner-Reetz, Maik
  • Kolodinski, Sabine
  • Biedermann, Kati
  • Wiatr, Maciej
  • Weinreich, Wenke
  • Gerlach, Gerald
  • Roy, Lisa
Abstract

<jats:p>The incessant downscaling of building blocks for memory and logic in computer chips requires energy-efficient devices. Thermoelectric-based temperature sensing, cooling as well as energy harvesting could be useful methods to reach reliable device performance with stable operating temperatures. For these applications, complementary metal–oxide–semiconductor (CMOS)-compatible and application ready thin films are needed and have to be optimized. In this work, we investigate the power factor of different phosphorous-doped silicon germanium (SiGe) films fabricated in a 300 mm CMOS-compatible cleanroom. For the thermoelectric characterization, we used a custom-built setup to determine the Seebeck coefficient and sheet resistance. For sample preparation, we used low pressure chemical vapor deposition with in situ doping and subsequent rapid thermal annealing on 300 mm wafers. Thin film properties, such as film thickness (12–250 nm), elemental composition, crystallinity, and microstructure, are studied via spectroscopic ellipsometry, x-ray photoelectron spectroscopy, x-ray diffraction, atomic force microscopy, and TEM. The SiGe-based thin films vary in the ratio of Si to Ge to P and doping concentrations. A power factor of 0.52 mW/m K2 could be reached by doping variation. Our results show that SiGe is a very attractive CMOS-compatible material on the 300 mm wafer level and is immediately ready for production of thermoelectric embedded applications.</jats:p>

Topics
  • impedance spectroscopy
  • x-ray diffraction
  • thin film
  • x-ray photoelectron spectroscopy
  • atomic force microscopy
  • semiconductor
  • transmission electron microscopy
  • Silicon
  • ellipsometry
  • annealing
  • crystallinity
  • chemical vapor deposition
  • Germanium