Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yaglioglu, Halime Gul

  • Google
  • 1
  • 5
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Experimental observation of transition from type I to type II ultrafast demagnetization dynamics in chemically disordered Fe<sub>60</sub>Al<sub>40</sub> thin film, driven by laser fluence1citations

Places of action

Chart of shared publication
Bese, C.
1 / 1 shared
Arslan, M.
1 / 1 shared
Tabak, Z.
1 / 1 shared
Duman, Eyüp
1 / 2 shared
Bozdag, T.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Bese, C.
  • Arslan, M.
  • Tabak, Z.
  • Duman, Eyüp
  • Bozdag, T.
OrganizationsLocationPeople

article

Experimental observation of transition from type I to type II ultrafast demagnetization dynamics in chemically disordered Fe<sub>60</sub>Al<sub>40</sub> thin film, driven by laser fluence

  • Yaglioglu, Halime Gul
  • Bese, C.
  • Arslan, M.
  • Tabak, Z.
  • Duman, Eyüp
  • Bozdag, T.
Abstract

<jats:p> Understanding of the laser-induced ultrafast demagnetization dynamics is one of the most challenging and hot topics in magnetism research due to its potential applications in magnetic storage devices and the field of spintronics. Recently, a laser-induced switching of ferromagnetism, driven by a disorder–order transition on FeAl thin films, has been experimentally demonstrated. The switching of ferromagnetic ordering by ultrafast laser pulses in FeAl thin films may open new possible applications of this material such as magnetic data storage and manipulation. Since the speed of the magnetic switching of magnetic states in thin films is one of the critical parameters for these applications, here we used time resolved magneto-optical Kerr measurements to investigate the demagnetization dynamics of Fe[Formula: see text]Al[Formula: see text] thin films at room temperature. We have for the first time observed a clear transition from one-step dynamics (type I) to two-step (type II) dynamics in the same material by increasing pump laser fluence. This experimental observation may give a strong confirmation that the ultrafast demagnetization process can be treated as a thermal process and is driven by the difference between temperatures of the electron and spin systems. </jats:p>

Topics
  • impedance spectroscopy
  • thin film