People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sharma, Astha
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2022Direct solar to hydrogen conversion enabled by silicon photocathodes with carrier selective passivated contactscitations
- 2021Ultrathin HfO2passivated silicon photocathodes for efficient alkaline water splittingcitations
- 2021Direct Solar Hydrogen Generation at 20% Efficiency Using Low-Cost Materialscitations
- 2020Over 17% Efficiency Stand-Alone Solar Water Splitting Enabled by Perovskite-Silicon Tandem Absorberscitations
Places of action
Organizations | Location | People |
---|
article
Ultrathin HfO2passivated silicon photocathodes for efficient alkaline water splitting
Abstract
<p>HfO2 has many favorable characteristics for use in energy conversion devices including high thermodynamic stability, good chemical stability in corrosive electrolytes, high refractive index, and wide bandgap. Here, we report surface passivation of a c-Si photocathode by ultrathin HfO2 prepared using atomic layer deposition as an effective approach for enhancing its photoelectrochemical (PEC) performance. The effect of the thickness of HfO2, deposition temperature, and annealing in forming gas on the passivation performance are systematically investigated. We demonstrate that the Si photocathode with a p+/n/n+ structure decorated with a Ni3N/Ni cocatalyst and an HfO2 interlayer follows a metal-insulator-semiconductor mechanism with thicker HfO2 films proving detrimental to the PEC performance. The Si photocathode passivated with a 1 nm HfO2 layer exhibits an enhancement in the onset potential by 100 mV, an applied-bias photon-to-current efficiency of 9%, and improved operational stability. This work provides insights into the application of HfO2 as a passivating layer for Si photoelectrodes for solar hydrogen production.</p>