Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Melskens, Jimmy

  • Google
  • 15
  • 35
  • 326

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (15/15 displayed)

  • 2023The native and metastable defects and their joint density of states in hydrogenated amorphous silicon obtained from the improved dual beam photoconductivity method1citations
  • 2022POx/Al2O3 stacks for surface passivation of Si and InP7citations
  • 2022POx/Al2O3 stacks for surface passivation of Si and InP7citations
  • 2021Infrared optical properties:Hydrogen bonding and stabilitycitations
  • 2021Surface passivation of germanium by atomic layer deposited Al2O3 nanolayers33citations
  • 2021Surface passivation of germanium by atomic layer deposited Al2O3 nanolayers33citations
  • 2021Excellent surface passivation of germanium by a-Si:H/Al2O3 stacks27citations
  • 2020Self-aligned local contact opening and n+ diffusion by single-step laser doping from POx/Al2O3 passivation stacks8citations
  • 2020Self-aligned local contact opening and n+ diffusion by single-step laser doping from POx/Al2O3 passivation stacks8citations
  • 2019Performance and thermal stability of an a-Si:H/TiOx/Yb stack as an electron-selective contact in silicon heterojunction solar cells33citations
  • 2018Passivating electron-selective contacts for silicon solar cells based on an a-Si:H/TiOx stack and a low work function metal43citations
  • 2018Atomic-layer deposited Nb2O5 as transparent passivating electron contact for c-Si solar cells80citations
  • 2018Light-induced reversible optical properties of hydrogenated amorphous silicon:a promising optically programmable photonic material3citations
  • 2018Status and prospects for atomic layer Deposited metal oxide thin films in passivating contacts for c-Si photovoltaicscitations
  • 2018Passivating electron-selective contacts for silicon solar cells based on an a-Si:H/TiO x stack and a low work function metal43citations

Places of action

Chart of shared publication
Smets, A. H. M.
1 / 11 shared
Güneş, Mehmet
1 / 1 shared
Theeuwes, Roel
4 / 7 shared
Berghuis, W. J. H.
3 / 5 shared
Macco, Bart
7 / 20 shared
Breuer, Uwe
2 / 8 shared
Beyer, Wolfhard
2 / 3 shared
Kessels, W. M. M.
10 / 161 shared
Berghuis, Wilhelmus J. H.
1 / 1 shared
Black, Lachlan E.
3 / 3 shared
Theeuwes, Roel J.
1 / 1 shared
Kessels, Wilhelmus M. M.
3 / 22 shared
Podraza, Nikolas J.
1 / 4 shared
Stuckelberger, Michael E.
1 / 4 shared
Berghuis, Willem-Jan H.
1 / 3 shared
Theeuwes, R. J.
2 / 5 shared
Verheijen, Marcel A.
2 / 39 shared
Ernst, Marco
2 / 2 shared
Macdonald, Daniel
2 / 10 shared
Cho, Jinyoun
3 / 6 shared
Radhakrishnan, Hariharsudan Sivaramakrishnan
1 / 10 shared
Payo, Maria Recaman
2 / 7 shared
Szlufcik, Jozef
3 / 11 shared
Poortmans, Jef
3 / 56 shared
Debucquoy, Maarten
3 / 9 shared
Gordon, Ivan
3 / 23 shared
Bearda, Twan
2 / 8 shared
Jambaldinni, Shruti
2 / 4 shared
Van De Loo, Bas W. H.
2 / 3 shared
Berghuis, Willem Jan H.
1 / 1 shared
Raz, Oded
1 / 2 shared
Stabile, Ripalta
1 / 7 shared
Mohammed, Mahir Asif
1 / 1 shared
Smit, Sjoerd
1 / 1 shared
Recamán Payo, Maria
1 / 1 shared
Chart of publication period
2023
2022
2021
2020
2019
2018

Co-Authors (by relevance)

  • Smets, A. H. M.
  • Güneş, Mehmet
  • Theeuwes, Roel
  • Berghuis, W. J. H.
  • Macco, Bart
  • Breuer, Uwe
  • Beyer, Wolfhard
  • Kessels, W. M. M.
  • Berghuis, Wilhelmus J. H.
  • Black, Lachlan E.
  • Theeuwes, Roel J.
  • Kessels, Wilhelmus M. M.
  • Podraza, Nikolas J.
  • Stuckelberger, Michael E.
  • Berghuis, Willem-Jan H.
  • Theeuwes, R. J.
  • Verheijen, Marcel A.
  • Ernst, Marco
  • Macdonald, Daniel
  • Cho, Jinyoun
  • Radhakrishnan, Hariharsudan Sivaramakrishnan
  • Payo, Maria Recaman
  • Szlufcik, Jozef
  • Poortmans, Jef
  • Debucquoy, Maarten
  • Gordon, Ivan
  • Bearda, Twan
  • Jambaldinni, Shruti
  • Van De Loo, Bas W. H.
  • Berghuis, Willem Jan H.
  • Raz, Oded
  • Stabile, Ripalta
  • Mohammed, Mahir Asif
  • Smit, Sjoerd
  • Recamán Payo, Maria
OrganizationsLocationPeople

article

Excellent surface passivation of germanium by a-Si:H/Al2O3 stacks

  • Theeuwes, Roel
  • Berghuis, W. J. H.
  • Macco, Bart
  • Melskens, Jimmy
  • Kessels, W. M. M.
Abstract

Surface passivation of germanium is vital for optimal performance of Ge based optoelectronic devices especially considering their rapidly<br/>increasing surface-to-volume ratios. In this work, we have investigated the surface passivation of Ge by a stack consisting of a thin layer of<br/>hydrogenated amorphous silicon (a-Si:H) and an aluminum oxide (Al2O3) capping layer. Plasma-enhanced chemical vapor deposition was<br/>used to deposit the a-Si:H (0–10 nm), while thermal and plasma-enhanced atomic layer deposition (ALD) were employed for the Al2O3<br/>films (0–22 nm). Transient photoconductance decay measurements revealed a recombination velocity as low as 2.7 cm s−1 for an a-Si:H<br/>layer as thin as 1.8 nm and an Al2O3 film of only ∼6 nm. In this state-of-the-art passivation scheme, the plasma-enhanced ALD process for<br/>the Al2O3 capping layer proved superior to the thermal ALD process since it resulted in an exceptionally high negative fixed charge density<br/>(Qf ∼ 1013 cm−2), which proved a key factor for the low surface recombination velocity. Transmission electron microscopy and energy x-ray<br/>dispersion revealed that a thin SiOx layer (∼1.4 nm) forms between a-Si:H and Al2O3 during the ALD process, which is thought to be the<br/>origin of this high negative fixed charge density. This passivation stack is regarded as highly interesting for applications such as solar cells,<br/>nanolasers, and nano-LEDs based on p-type Ge.

Topics
  • density
  • impedance spectroscopy
  • dispersion
  • surface
  • amorphous
  • aluminum oxide
  • aluminium
  • transmission electron microscopy
  • Silicon
  • chemical vapor deposition
  • atomic layer deposition
  • Germanium