Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lichtensteiger, Céline

  • Google
  • 10
  • 64
  • 382

Universidad de Cantabria

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Direct imaging of the magnetoelectric coupling in multiferroic BaTiO3/La0.9Ba0.1MnO31citations
  • 2023Mapping the complex evolution of ferroelastic/ferroelectric domain patterns in epitaxially strained PbTiO3 heterostructures12citations
  • 2021Microstructure of epitaxial Mg3N2 thin films grown by MBE10citations
  • 2021Epitaxial Zn3N2 thin films by molecular beam epitaxy: Structural, electrical, and optical properties5citations
  • 2020Full control of polarization in ferroelectric thin films using growth temperature to modulate defects24citations
  • 2019Strain-engineering Mott-insulating La2CuO448citations
  • 2016Positive effect of an internal depolarization field in ultrathin epitaxial ferroelectric films52citations
  • 2016Positive Effect of an Internal Depolarization Field in Ultrathin Epitaxial Ferroelectric Films52citations
  • 2009Electric-field tuning of the metal-insulator transition in ultrathin films of LaNiO3125citations
  • 2007Monodomain to polydomain transition in ferroelectric PbTiO3 thin films with La0.67Sr0.33MnO3 electrodes53citations

Places of action

Chart of shared publication
Stramaglia, Federico
1 / 3 shared
Tovaglieri, Ludovica
2 / 2 shared
Vaz, Carlos
1 / 2 shared
Nolting, Frithjof
1 / 9 shared
Panchal, Gyanendra
1 / 3 shared
Zatterin, Edoardo
1 / 7 shared
Su, Chia-Ping
1 / 1 shared
Paruch, Patrycja
2 / 7 shared
Hadjimichael, Marios
1 / 6 shared
Gaponenko, Iaroslav
1 / 4 shared
Gloter, Alexandre
1 / 27 shared
Triscone, Jean-Marc
4 / 12 shared
Deparis, C.
1 / 7 shared
John, Philipp Maximilian
2 / 2 shared
Zuniga-Perez, Jesus
2 / 2 shared
Vennéguès, Philippe
1 / 9 shared
Rotella, H.
2 / 8 shared
Deparis, Christiane
1 / 3 shared
Bachelet, Romain
1 / 12 shared
Grundmann, Marius
1 / 32 shared
Hugues, M.
1 / 2 shared
Khalfioui, M. Al
1 / 1 shared
Saint-Girons, Guillaume
1 / 16 shared
Welk, Antonia
1 / 1 shared
Naden, Aaron B.
1 / 11 shared
Weymann, Christian
1 / 1 shared
Fernandez-Peña, Stéphanie
1 / 1 shared
Martin, Lane W.
1 / 11 shared
Dedon, Liv R.
1 / 3 shared
Chang, Johan
1 / 8 shared
Christensen, N. B.
1 / 3 shared
Horio, Masafumi
1 / 4 shared
Wei, Haofei
1 / 1 shared
Ivashko, Oleh
1 / 13 shared
Wan, W.
1 / 4 shared
Schmitt, T.
1 / 18 shared
Shen, K. M.
1 / 8 shared
Beasley, M. R.
1 / 3 shared
Adamo, C.
1 / 9 shared
Paris, E.
1 / 7 shared
Mcnally, D. E.
1 / 3 shared
Tseng, Y.
1 / 4 shared
Tomczak, Jan M.
1 / 1 shared
Shaik, N. E.
1 / 3 shared
Gibert, M.
1 / 7 shared
Ronnow, Henrik M.
1 / 2 shared
Chen, Jason
2 / 2 shared
Junquera Quintana, Francisco Javier
1 / 6 shared
Liu, Guangqing
2 / 2 shared
Valanoor, Nagarajan
2 / 7 shared
Aguado Puente, Pablo
1 / 1 shared
Aguadopuente, Pablo
1 / 1 shared
Junquera, Javier
1 / 6 shared
Triscone, Jeanmarc
1 / 2 shared
Triscone, J.-M.
1 / 3 shared
Scherwitzl, R.
1 / 2 shared
Zubko, P.
1 / 10 shared
Hoffman, Jason
1 / 2 shared
Ahn, Charles H.
1 / 1 shared
Despont, Laurent
1 / 1 shared
Stucki, Nicolas
1 / 3 shared
Yau, Jeng-Bang
1 / 1 shared
Aebi, Philipp
1 / 2 shared
Dawber, Matthew
1 / 1 shared
Chart of publication period
2024
2023
2021
2020
2019
2016
2009
2007

Co-Authors (by relevance)

  • Stramaglia, Federico
  • Tovaglieri, Ludovica
  • Vaz, Carlos
  • Nolting, Frithjof
  • Panchal, Gyanendra
  • Zatterin, Edoardo
  • Su, Chia-Ping
  • Paruch, Patrycja
  • Hadjimichael, Marios
  • Gaponenko, Iaroslav
  • Gloter, Alexandre
  • Triscone, Jean-Marc
  • Deparis, C.
  • John, Philipp Maximilian
  • Zuniga-Perez, Jesus
  • Vennéguès, Philippe
  • Rotella, H.
  • Deparis, Christiane
  • Bachelet, Romain
  • Grundmann, Marius
  • Hugues, M.
  • Khalfioui, M. Al
  • Saint-Girons, Guillaume
  • Welk, Antonia
  • Naden, Aaron B.
  • Weymann, Christian
  • Fernandez-Peña, Stéphanie
  • Martin, Lane W.
  • Dedon, Liv R.
  • Chang, Johan
  • Christensen, N. B.
  • Horio, Masafumi
  • Wei, Haofei
  • Ivashko, Oleh
  • Wan, W.
  • Schmitt, T.
  • Shen, K. M.
  • Beasley, M. R.
  • Adamo, C.
  • Paris, E.
  • Mcnally, D. E.
  • Tseng, Y.
  • Tomczak, Jan M.
  • Shaik, N. E.
  • Gibert, M.
  • Ronnow, Henrik M.
  • Chen, Jason
  • Junquera Quintana, Francisco Javier
  • Liu, Guangqing
  • Valanoor, Nagarajan
  • Aguado Puente, Pablo
  • Aguadopuente, Pablo
  • Junquera, Javier
  • Triscone, Jeanmarc
  • Triscone, J.-M.
  • Scherwitzl, R.
  • Zubko, P.
  • Hoffman, Jason
  • Ahn, Charles H.
  • Despont, Laurent
  • Stucki, Nicolas
  • Yau, Jeng-Bang
  • Aebi, Philipp
  • Dawber, Matthew
OrganizationsLocationPeople

article

Epitaxial Zn3N2 thin films by molecular beam epitaxy: Structural, electrical, and optical properties

  • Deparis, Christiane
  • Bachelet, Romain
  • Lichtensteiger, Céline
  • John, Philipp Maximilian
  • Grundmann, Marius
  • Zuniga-Perez, Jesus
  • Hugues, M.
  • Khalfioui, M. Al
  • Saint-Girons, Guillaume
  • Welk, Antonia
  • Rotella, H.
Abstract

<jats:p>Single-crystalline Zn3N2 thin films have been grown on MgO (100) and YSZ (100) substrates by plasma-assisted molecular beam epitaxy. Depending on growth conditions, the film orientation can be tuned from (100) to (111). For each orientation, x-ray diffraction and reflection high-energy electron diffraction are used to determine the epitaxial relationships and to quantify the structural quality. Using high-temperature x-ray diffraction, the Zn3N2 linear thermal expansion coefficient is measured with an average of (1.5 ± 0.1) × 10−5 K−1 in the range of 300–700 K. The Zn3N2 films are found to be systematically n-type and degenerate, with carrier concentrations of 1019–1021 cm−3 and electron mobilities ranging from 4 to 388 cm2 V−1 s−1. Low-temperature Hall effect measurements show that ionized impurity scattering is the main mechanism limiting the mobility. The large carrier densities lead to measured optical bandgaps in the range of 1.05–1.37 eV due to Moss–Burstein band filling, with an extrapolated value of 0.99 eV for actual bandgap energy.</jats:p>

Topics
  • impedance spectroscopy
  • mobility
  • x-ray diffraction
  • thin film
  • electron diffraction
  • thermal expansion