People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bachelet, Romain
French National Centre for Scientific Research
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Integration of epitaxial LiNbO3 thin films with silicon technologycitations
- 2023Strain generated by the stacking faults in epitaxial SrO(SrTiO 3 ) N Ruddlesden–Popper structures
- 2023Efficient Optimization of High‐Quality Epitaxial Lithium Niobate Thin Films by Chemical Beam Vapor Deposition: Impact of Cationic Stoichiometrycitations
- 2023Efficient Optimization of High‐Quality Epitaxial Lithium Niobate Thin Films by Chemical Beam Vapor Deposition: Impact of Cationic Stoichiometrycitations
- 2021Giant Tuning of Electronic and Thermoelectric Properties by Epitaxial Strain in p-Type Sr-Doped LaCrO 3 Transparent Thin Filmscitations
- 2021Epitaxial Zn3N2 thin films by molecular beam epitaxy: Structural, electrical, and optical propertiescitations
- 2019Perovskite-oxide based hyperbolic metamaterialscitations
- 2019Poisson ratio and bulk lattice constant of (Sr 0.25 La 0.75 )CrO 3 from strained epitaxial thin filmscitations
- 2016Development of Epitaxial Oxide Ceramics Nanomaterials Based on Chemical Strategies on Semiconductor Platforms
- 2014Structural study and ferroelectricity of epitaxial BaTiO3 films on silicon grown by molecular beam epitaxycitations
- 2011Heteroepitaxial orientation control of YSZ thin films by selective growth on SrO-, TiO2-terminated SrTiO3 crystal surfacescitations
- 2011CoFe2O4/buffer layer ultrathin heterostructures on Si(001)citations
Places of action
Organizations | Location | People |
---|
article
Epitaxial Zn3N2 thin films by molecular beam epitaxy: Structural, electrical, and optical properties
Abstract
<jats:p>Single-crystalline Zn3N2 thin films have been grown on MgO (100) and YSZ (100) substrates by plasma-assisted molecular beam epitaxy. Depending on growth conditions, the film orientation can be tuned from (100) to (111). For each orientation, x-ray diffraction and reflection high-energy electron diffraction are used to determine the epitaxial relationships and to quantify the structural quality. Using high-temperature x-ray diffraction, the Zn3N2 linear thermal expansion coefficient is measured with an average of (1.5 ± 0.1) × 10−5 K−1 in the range of 300–700 K. The Zn3N2 films are found to be systematically n-type and degenerate, with carrier concentrations of 1019–1021 cm−3 and electron mobilities ranging from 4 to 388 cm2 V−1 s−1. Low-temperature Hall effect measurements show that ionized impurity scattering is the main mechanism limiting the mobility. The large carrier densities lead to measured optical bandgaps in the range of 1.05–1.37 eV due to Moss–Burstein band filling, with an extrapolated value of 0.99 eV for actual bandgap energy.</jats:p>