People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Auer, Henry
Fraunhofer Institute for Ceramic Technologies and Systems
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Co-Sintering of Li1.3Al0.3Ti1.7(PO4)3 and LiFePO4 in Tape-Casted Composite Cathodes for Oxide Solid-State Batteriescitations
- 2023Benchmarking and Critical Design Considerations of Zero‐Excess Li‐Metal Batteriescitations
- 2021Structure of crystalline and amorphous materials in the NASICON system Na1+xAlxGe2-x(PO4)3citations
- 2021Structure of crystalline and amorphous materials in the NASICON system Na 1+x Al x Ge 2- x (PO 4 ) 3citations
- 2021Structure of crystalline and amorphous materials in the NASICON system Na1+xAlxGe2- x(PO4)3citations
- 2020Processing of Sulfide Solid Electrolytes for All-Solid-State Battery Electrodes. A Scalable Composite Cathode Manufacturing Approach
- 2018Reversible hydrogenation of the Zintl phases BaGe and BaSn studied by in situ diffractioncitations
Places of action
Organizations | Location | People |
---|
article
Structure of crystalline and amorphous materials in the NASICON system Na1+xAlxGe2- x(PO4)3
Abstract
<p>The structure of crystalline and amorphous materials in the sodium (Na) super-ionic conductor system Na1+xAlxGe2-x(PO4)3 with x = 0, 0.4, and 0.8 was investigated by combining (i) neutron and x-ray powder diffraction and pair-distribution function analysis with (ii) 27Al and 31P magic angle spinning (MAS) and 31P/23Na double-resonance nuclear magnetic resonance (NMR) spectroscopy. A Rietveld analysis of the powder diffraction patterns shows that the x = 0 and x = 0.4 compositions crystallize into space group-type R3¯, whereas the x = 0.8 composition crystallizes into space group-type R3¯c. For the as-prepared glass, the pair-distribution functions and 27Al MAS NMR spectra show the formation of sub-octahedral Ge and Al centered units, which leads to the creation of non-bridging oxygen (NBO) atoms. The influence of these atoms on the ion mobility is discussed. When the as-prepared glass is relaxed by thermal annealing, there is an increase in the Ge and Al coordination numbers that leads to a decrease in the fraction of NBO atoms. A model is proposed for the x = 0 glass in which super-structural units containing octahedral Ge(6) and tetrahedral P(3) motifs are embedded in a matrix of tetrahedral Ge(4) units, where superscripts denote the number of bridging oxygen atoms. The super-structural units can grow in size by a reaction in which NBO atoms on the P(3) motifs are used to convert Ge(4) to Ge(6) units. The resultant P(4) motifs thereby provide the nucleation sites for crystal growth via a homogeneous nucleation mechanism. </p>