Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tengg, Lisa Maria

  • Google
  • 1
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Local-probe based electrical characterization of a multiphase intermetallic γ-TiAl based alloycitations

Places of action

Chart of shared publication
Kaufmann, Benjamin
1 / 1 shared
Billovits, Thomas
1 / 1 shared
Huszar, Michael
1 / 1 shared
Mayer, Svea
1 / 56 shared
Teichert, Christian
1 / 15 shared
Clemens, Helmut
1 / 120 shared
Kratzer, Markus
1 / 3 shared
Supancic, Peter
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Kaufmann, Benjamin
  • Billovits, Thomas
  • Huszar, Michael
  • Mayer, Svea
  • Teichert, Christian
  • Clemens, Helmut
  • Kratzer, Markus
  • Supancic, Peter
OrganizationsLocationPeople

article

Local-probe based electrical characterization of a multiphase intermetallic γ-TiAl based alloy

  • Kaufmann, Benjamin
  • Billovits, Thomas
  • Tengg, Lisa Maria
  • Huszar, Michael
  • Mayer, Svea
  • Teichert, Christian
  • Clemens, Helmut
  • Kratzer, Markus
  • Supancic, Peter
Abstract

The requirements for high performance and low energy consumption call for novel light-weight high-temperature structural materials. A possible answer can be intermetallic γ-TiAl-based alloys, which—in terms of weight—clearly outperform the classical Ni based alloys. However, not only their mechanical properties, such as high specific strength and high creep resistance, are important for device design and use, but also their electrical behavior is of significant importance. In order to correctly interpret the results of electrical material testing techniques, such as eddy current testing, a profound knowledge on the electrical properties is essential. In this study, local-probe techniques, such as conductive atomic force microscopy (CAFM) and micro four-point probe (μ4PP) measurements, were used to determine the specific resistivity of the constituent phases of a Ti-43.5Al-4Nb-1Mo-0.1B (at. %) TNM γ-TiAl based alloy. It turned out that the different phases exhibit noticeably different resistivity values, which vary over two orders of magnitude, whereas the βo phase has the smallest resistivity and the α2 phase the highest. CAFM and μ4PP results were in rather good agreement for the α2 and γ phases with resistivity values of ρα2,CAFM = (1.0 ± 0.7) × 10−5 Ω m and ρα2,4PP = (1.5 ± 1.5) × 10−5 Ω m for the α2-phase, and ργ,CAFM = (6.5 ± 2.1) × 10−6 Ω m, and ργ,4PP = (1.4 ± 1.2) × 10−6 Ω m for the γ-phase. For the βo phase, μ4PP measurements resulted in ρβo,4PP = (9.0 ± 5.0) × 10−7 Ω m. In this case, CAFM values are not reliable due to the formation of a contact barrier that deteriorates the measurements.<br/>ACKNOWLEDGMENTS

Topics
  • impedance spectroscopy
  • resistivity
  • phase
  • atomic force microscopy
  • strength
  • intermetallic
  • creep