People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Talib, Norfazillah
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2021The performance of modified Jatropha-based nanofluid during turning processcitations
- 2021Experimental analysis of tribological performance of modified Jatropha oil enriched with nanoparticle additives for machining application
- 2020Tribological Analyses of Modified Jatropha Oil with hBN and Graphene Nanoparticles as An Alternative Lubricant for Machining Processcitations
- 2020Tribological Assessment of Modified Jatropha Oil with hBN and Graphene Nanoparticles as a New Preference for the Metalworking fluidcitations
- 2018Investigation on the Tribological Behaviour of Modified Jatropha Oil with Hexagonal Boron Nitride Particles as a Metalworking Fluid for Machining Processcitations
- 2017Tribological Evaluation on Various Formulation of Modified RBD Palm Olein as Sustainable Metalworking Fluids for Machining Processcitations
- 2017Performance evaluation of biodegradable metalworking fluids for machining process
- 2017Tribological evaluation of hexagonal boron nitride in modified jatropha oil as sustainable metalworking fluidcitations
- 2016The Effect of Tribology Behavior on Machining Performances When Using Bio-based Lubricant as a Sustainable Metalworking Fluidcitations
- 2015Performance Evaluation of Chemically Modified Crude Jatropha Oil as a Bio-based Metalworking Fluids for Machining Processcitations
- 2014The Performance of Modified Jatropha-Oil Based Trimethylolpropane (TMP) Ester on Tribology Characteristic for Sustainable Metalworking Fluids (MWFs)citations
- 2013Effect of Pouring Temperature on Microstructure Properties of Al-Si LM6 Alloy Sand Castingcitations
- 2011Experimental study of vortex flow induced by a vortex well in sand castingcitations
Places of action
Organizations | Location | People |
---|
document
Experimental analysis of tribological performance of modified Jatropha oil enriched with nanoparticle additives for machining application
Abstract
The intensified developments of the vegetable-based metalworking fluids have been growing rapidly due to the environmental and health issue of the utilization of the mineral based oil. The vegetable oils are a great potential substitution of the mineral based oil which has been explored in recent years due to their high biodegradability, renewability and low toxicity in comparable with mineral oil. Non-edible vegetable oil had attracted an attention of the researches in contrast with edible oil which significantly compete with the human food supply. The main focus of this study was to evaluate a new formulation of vegetable-based nanofluid from chemically modified jatropha oil (MJO) blended with hexagonal boron nitride (hBN), graphene and copper oxide (CuO) nanoparticles at 0.05 wt.% concentration. The physicochemical testing was carried out in term of kinematic viscosity, viscosity index and flash point and was compare with commercial synthetic ester (SE). The analysis of MJO mixed with nanoparticles in the perspective of it tribological has been performed through a four ball tribo testing to determine the coefficient of friction, mean wear scar diameter, friction torque, surface roughness and volume wear rate. The results showed that the tribological performance the MJO+0.05wt.% CuO exhibit lowest value in of coefficient of friction and friction torque followed by MJO+0.05wt.% graphene, MJO+0.05wt.% hBN and SE. Nevertheless, the MJO+0.05wt.% graphene and MJO+0.05wt.% hBN provided the significant improvement by providing the lowest value of the mean wear scar diameter and surface roughness respectively. It concluded that the modified jatropha oil enriched with nanoparticles had a great improvement on their tribological performance, hence it’s a highly potential substitution of the SE for machining process.