People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Isakov, Matti
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Dynamic plasticity of metalscitations
- 2024In-situ synchrotron X-ray diffraction study of the effects of grain orientation on the martensitic phase transformations during tensile loading at different strain rates in metastable austenitic stainless steelcitations
- 2024In-situ synchrotron X-ray diffraction study of the effects of grain orientation on the martensitic phase transformations during tensile loading at different strain rates in metastable austenitic stainless steelcitations
- 2023Microscale Strain Localizations and Strain-Induced Martensitic Phase Transformation in Austenitic Steel 301LN at Different Strain Ratescitations
- 2023In situ damage characterization of CFRP under compression using high-speed optical, infrared and synchrotron X-ray phase-contrast imagingcitations
- 2023In situ damage characterization of CFRP under compression using high-speed optical, infrared and synchrotron X-ray phase-contrast imagingcitations
- 2023In-Situ X-ray Diffraction Analysis of Metastable Austenite Containing Steels Under Mechanical Loading at a Wide Strain Rate Rangecitations
- 2023Large-Scale Fatigue Testing Based on the Rotating Beam Methodcitations
- 2022Crystal plasticity modeling of transformation plasticity and adiabatic heating effects of metastable austenitic stainless steelscitations
- 2022Strain Hardening and Adiabatic Heating of Stainless Steels After a Sudden Increase of Strain Ratecitations
- 2022Effects of strain rate on strain-induced martensite nucleation and growth in 301LN metastable austenitic steelcitations
- 2021The effect of local copper mesh geometry on the damage induced in composite structures subjected to artificial lightning strike ; Artificial lightning strike onto composite structures - effect of local mesh geometrycitations
- 2021Some aspects of the behavior of metastable austenitic steels at high strain rates
- 2021The effect of local copper mesh geometry on the damage induced in composite structures subjected to artificial lightning strikecitations
- 2020Low-cycle impact fatigue testing based on an automatized split Hopkinson bar devicecitations
- 2020The effect of strain rate on the orientation of the fracture plane in a unidirectional polymer matrix composite under transverse compression loadingcitations
- 2020Evaluation of the strain rate dependent behavior of a CFRP using two different Hopkinson bars
- 2019Adiabatic Heating of Austenitic Stainless Steels at Different Strain Ratescitations
- 2019Fracture toughness measurement without force data – Application to high rate DCB on CFRPcitations
- 2019Uncoupling the effects of strain rate and adiabatic heating on strain induced martensitic phase transformations in a metastable austenitic steelcitations
- 2018Effects of adiabatic heating estimated from tensile tests with continuous heatingcitations
- 2018Strain rate jump tests on an austenitic stainless steel with a modified tensile Hopkinson split barcitations
- 2017Characterization of Flame Cut Heavy Steelcitations
- 2017Experimental fatigue characterization and elasto-plastic finite element analysis of notched specimens made of direct-quenched ultra-high-strength steelcitations
- 2016The effect of initial microstructure on the final properties of press hardened 22MnB5 steelscitations
- 2016Iterative Determination of the Orientation Relationship Between Austenite and Martensite from a Large Amount of Grain Pair Misorientationscitations
- 2015Effect of Strain Rate on the Martensitic Transformation During Plastic Deformation of an Austenitic Stainless Steelcitations
- 2014Sedimentation stability and rheological properties of ionic liquid-based bidisperse magnetorheological fluidscitations
- 2012Strain Rate History Effects in a Metastable Austenitic Stainless Steel
Places of action
Organizations | Location | People |
---|
conferencepaper
Low-cycle impact fatigue testing based on an automatized split Hopkinson bar device
Abstract
Preventing fatigue damage and failure in components subjected to repeated impact loading is of great interest in many engineering applications. Quite often, material response during high-rate loading differs from quasi-static response due to the material’s strain rate sensitivity and adiabatic heating effects. Hence, experimental materials testing at realistic loading rates is important in many cases of impact fatigue. Impact loading tests involve an inherent challenge: since force equilibrium does not exist, the dynamic response of the whole load train must be properly accounted for in order to impose the desired loading on the specimen and to measure the specimen response. In the field of monotonic high strain rate materials testing, the Split Hopkinson Bar (SHB) technique has established itself due to its simplicity in terms of structural dynamics. However, traditional SHB setups require a long time to be reset/rearmed after the impact, and therefore they are ill-suited for cyclic impact loading studies. In this contribution, we present a modified SHB technique with fully automatized rapid resetting/rearming of the setup, which allows for controlled cyclic impact loading at a rate of 0.5 Hz. The applicability of the method is demonstrated in this paper with test results for a tempered steel.<br/>