People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sandireddy, Venkatanarayana Prasad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Synthesis and characterization of amorphous Fe2.75Dy-oxide thin films demonstrating room-temperature semiconductor, magnetism, and optical transparency
Abstract
<jats:p>Recently, amorphous/disordered oxide thin films made from Fe and lanthanides like Dy and Tb have been reported to have a rich set of magnetic, optical, and electronic properties, as well as room-temperature magneto-electric coupling with multiferroics [A. Malasi et al., Sci. Rep. 5, 18157 (2015); H. Taz et al., Sci. Rep. 6, 27869 (2016); and H. Taz et al., Sci. Rep. 10, 1–10 (2020)]. Here, we report the synthesis and detailed characterization of Fe2.75Dy-oxide thin films prepared on various substrates using electron beam co-evaporation. The structure, chemistry, electric, magnetic, and optical properties were studied for the as-prepared and annealed (373 K, in air, 1 h) films of thickness 40 nm. High resolution transmission electron microscopy and electron diffraction study showed that the films were amorphous in both the as-prepared and annealed states. The electron energy-loss spectroscopy studies quantified that metal oxygen stoichiometry changed from Fe2.75Dy-O1.5 to Fe2.75Dy-O1.7 upon annealing. Synchrotron-based x-ray absorption spectroscopy investigation confirmed that the as-prepared films were highly disordered with predominantly metallic Fe and Dy states that became slightly oxidized with annealing in air. The as-prepared amorphous films demonstrated significantly high value of ordinary (∼10 cm2/V s) and anomalous (∼102 cm2/V s) Hall mobility and high electrical conductivity of ∼103 S/cm at room temperature. The cryogenic magnetic property measurement shows two-step magnetization below 200 K, suggesting exchange-spring magnetic interaction. The nature of the field cooled and zero-field cooled curves suggested a spin-glass like transition between 78 K and 80 K, with a characteristic broad peak. The Tauc plot analysis from optical transmission spectra confirms the existence of an optical bandgap of ∼2.42 eV that increased slightly to ∼2.48 eV upon annealing. This rich set of transport, optical, and magnetic properties in these thin films is very exciting and points to potential applicability in low-cost multifunctional devices requiring a combination of transparent, semiconducting, and magnetic responses, such as in spintronics.</jats:p>