Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Eriguchi, Kazutaka

  • Google
  • 1
  • 4
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Temperature-dependent growth of hexagonal and monoclinic gallium sulfide films by pulsed-laser deposition11citations

Places of action

Chart of shared publication
Biaou, Carlos
1 / 1 shared
Wu, Junqiao
1 / 1 shared
Dubon, Oscar D.
1 / 5 shared
Das, Sujit
1 / 5 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Biaou, Carlos
  • Wu, Junqiao
  • Dubon, Oscar D.
  • Das, Sujit
OrganizationsLocationPeople

article

Temperature-dependent growth of hexagonal and monoclinic gallium sulfide films by pulsed-laser deposition

  • Eriguchi, Kazutaka
  • Biaou, Carlos
  • Wu, Junqiao
  • Dubon, Oscar D.
  • Das, Sujit
Abstract

We demonstrate the selective, pulsed-laser deposition of hexagonal GaS and monoclinic Ga<sub>2</sub>S<sub>3</sub> films on sapphire substrates from a single Ga<sub>2</sub>S<sub>3 </sub>target in high-vacuum conditions. Growth at substrate temperatures below 550 °C causes GaS film formation, which indicates non-stoichiometric transfer from the target to the film. Surprisingly, stoichiometric transfer occurs at substrate temperatures above 650 °C with monoclinic Ga<sub>2</sub>S<sub>3</sub> as the preferred, higher S-content phase. Through a series of growth and annealing experiments, we show that GaS nucleation under S-deficient conditions leads to the preferred growth of this layered, hexagonal phase below 550 °C. Furthermore, GaS films annealed above 650 °C under high vacuum are transformed to Ga<sub>2</sub>S<sub>3</sub>, reflecting the greater stability of the monoclinic phase. By first growing Ga<sub>2</sub>S<sub>3</sub> at a higher temperature and subsequently growing GaS at a lower temperature, we can fabricate GaS/Ga<sub>2</sub>S<sub>3</sub> heterostructures in a single growth process.

Topics
  • Deposition
  • phase
  • experiment
  • layered
  • annealing
  • Gallium