Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Richardson, Giles

  • Google
  • 11
  • 53
  • 1648

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2020Deducing transport properties of mobile vacancies from perovskite solar cell characteristics40citations
  • 2020Deducing transport properties of mobile vacancies from perovskite solar cell characteristics40citations
  • 2020Identification of recombination losses and charge collection efficiency in a perovskite solar cell by comparing impedance response to a drift-diffusion model61citations
  • 2019How transport layer properties affect perovskite solar cell performance237citations
  • 2019How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model237citations
  • 2017Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells622citations
  • 2017A mathematical model for mechanically-induced deterioration of the binder in lithium-ion electrodes15citations
  • 2016Drift diffusion modelling of charge transport in photovoltaic devices5citations
  • 2015Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al O Buffer Layer377citations
  • 2009An asymptotic analysis of the buckling of a highly shear-resistant vesicle4citations
  • 2000The mixed boundary condition for the Ginzburg Landau model in thin films10citations

Places of action

Chart of shared publication
Courtier, Nicola
1 / 1 shared
Blakborn, Isabelle
1 / 1 shared
Feron, Krishna
2 / 12 shared
Lin, Liangyou
2 / 4 shared
Cave, James
3 / 6 shared
Ghosh, Dibyajyoti
2 / 7 shared
Walker, Alison
4 / 5 shared
Islam, Saiful
1 / 10 shared
Foster, Jamie
2 / 2 shared
Anderson, Kenrick
1 / 8 shared
Dijkhoff, Andrew
1 / 1 shared
Walker, Alison B.
2 / 15 shared
Dijkhoff, Andrew A.
1 / 1 shared
Jones, Timothy W.
1 / 2 shared
Blakborn, Isabelle A.
1 / 1 shared
Foster, Jamie M.
3 / 4 shared
Saiful Islam, M.
1 / 3 shared
Courtier, Nicola E.
3 / 6 shared
Anderson, Kenrick F.
1 / 1 shared
Cave, James M.
1 / 3 shared
Wilson, Gregory J.
1 / 5 shared
Wolf, Matther
1 / 1 shared
Anta, Juan
1 / 1 shared
Contreras-Bernal, Lidia
1 / 10 shared
Riquelme, Antonio
1 / 4 shared
Bennett, Laurence John
1 / 1 shared
Courtier, Nicola, Elizabeth
1 / 1 shared
Petrozza, Annamaria
2 / 28 shared
Saliba, Michael
1 / 33 shared
Matsui, Taisuke
1 / 2 shared
Tress, Wolfgang
1 / 11 shared
Gräztel, Michael
1 / 1 shared
Roose, Bart
1 / 11 shared
Nazeeruddin, Mohammad K.
1 / 1 shared
Foster, Jamie Michael
2 / 6 shared
Ball, James M.
1 / 8 shared
Angelis, Filippo De
1 / 30 shared
Turren-Cruz, Silver-Hamill
1 / 2 shared
Domanski, Konrad
1 / 3 shared
Hagfeldt, Anders
1 / 20 shared
Abate, Antonio
2 / 57 shared
Mine, Nicolas
1 / 2 shared
Steiner, Ullrich
1 / 42 shared
Correa-Baena, Juan-Pablo
1 / 10 shared
Carmona, Cristina Roldan
1 / 1 shared
Protas, Bartosz
1 / 1 shared
Chapman, S. J.
1 / 1 shared
Snaith, Henry J.
1 / 58 shared
Zhang, Wei
1 / 54 shared
Guarnera, Simone
1 / 3 shared
Reboux, Sylvain
1 / 1 shared
Jensen, Olivier E.
1 / 6 shared
Rubinstein, Jacob
1 / 1 shared
Chart of publication period
2020
2019
2017
2016
2015
2009
2000

Co-Authors (by relevance)

  • Courtier, Nicola
  • Blakborn, Isabelle
  • Feron, Krishna
  • Lin, Liangyou
  • Cave, James
  • Ghosh, Dibyajyoti
  • Walker, Alison
  • Islam, Saiful
  • Foster, Jamie
  • Anderson, Kenrick
  • Dijkhoff, Andrew
  • Walker, Alison B.
  • Dijkhoff, Andrew A.
  • Jones, Timothy W.
  • Blakborn, Isabelle A.
  • Foster, Jamie M.
  • Saiful Islam, M.
  • Courtier, Nicola E.
  • Anderson, Kenrick F.
  • Cave, James M.
  • Wilson, Gregory J.
  • Wolf, Matther
  • Anta, Juan
  • Contreras-Bernal, Lidia
  • Riquelme, Antonio
  • Bennett, Laurence John
  • Courtier, Nicola, Elizabeth
  • Petrozza, Annamaria
  • Saliba, Michael
  • Matsui, Taisuke
  • Tress, Wolfgang
  • Gräztel, Michael
  • Roose, Bart
  • Nazeeruddin, Mohammad K.
  • Foster, Jamie Michael
  • Ball, James M.
  • Angelis, Filippo De
  • Turren-Cruz, Silver-Hamill
  • Domanski, Konrad
  • Hagfeldt, Anders
  • Abate, Antonio
  • Mine, Nicolas
  • Steiner, Ullrich
  • Correa-Baena, Juan-Pablo
  • Carmona, Cristina Roldan
  • Protas, Bartosz
  • Chapman, S. J.
  • Snaith, Henry J.
  • Zhang, Wei
  • Guarnera, Simone
  • Reboux, Sylvain
  • Jensen, Olivier E.
  • Rubinstein, Jacob
OrganizationsLocationPeople

article

Deducing transport properties of mobile vacancies from perovskite solar cell characteristics

  • Courtier, Nicola
  • Blakborn, Isabelle
  • Feron, Krishna
  • Lin, Liangyou
  • Cave, James
  • Ghosh, Dibyajyoti
  • Walker, Alison
  • Richardson, Giles
  • Islam, Saiful
  • Foster, Jamie
  • Anderson, Kenrick
  • Dijkhoff, Andrew
Abstract

The absorber layers in perovskite solar cells possess a high concentration of mobile ion vacancies. These vacancies undertake thermally activated hops between neighboring lattice sites. The mobile vacancy concentration N0 is much higher and the activation energy EA for ion hops is much lower than is seen in most other semiconductors due to the inherent softness of perovskite materials. The timescale at which the internal electric field changes due to ion motion is determined by the vacancy diffusion coefficient Dv and is similar to the timescale on which the external bias changes by a significant fraction of the open-circuit voltage at typical scan rates. Therefore, hysteresis is often observed in which the shape of the current–voltage, J–V, characteristic depends on the direction of the voltage sweep. There is also evidence that this defect migration plays a role in degradation. By employing a charge transport model of coupled ion-electron conduction in a perovskite solar cell, we show that EA for the ion species responsible for hysteresis can be obtained directly from measurements of the temperature variation of the scan-rate dependence of the short-circuit current and of the hysteresis factor H. This argument is validated by comparing EA deduced from measured J–V curves for four solar cell structures with density functional theory calculations. In two of these structures, the perovskite is MAPbI3, where MA is methylammonium, CH3NH3; the hole transport layer (HTL) is spiro (spiro-OMeTAD, 2,2′,7,7′- tetrakis[N,N-di(4-methoxyphenyl) amino]-9,9′-spirobifluorene) and the electron transport layer (ETL) is TiO2 or SnO2. For the third and fourth structures, the perovskite layer is FAPbI3, where FA is formamidinium, HC(NH2)2, or MAPbBr3, and in both cases, the HTL is spiro and the ETL is SnO2. For all four structures, the hole and electron extracting electrodes are Au and fluorine doped tin oxide, respectively. We also use our model to predict how the scan rate dependence of the power conversion efficiency varies with EA, N0, and parameters determining free charge recombination.

Topics
  • density
  • perovskite
  • impedance spectroscopy
  • theory
  • semiconductor
  • density functional theory
  • activation
  • tin
  • power conversion efficiency
  • elemental analysis
  • vacancy