Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Smirnov, Y.

  • Google
  • 2
  • 8
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Optical Properties and Nonlinear Optical Response of Zirconium-doped Indium Oxide in the Epsilon-Near-Zero Regioncitations
  • 2020Origins of infrared transparency in highly conductive perovskite stannate BaSnO313citations

Places of action

Chart of shared publication
Offerhaus, Herman
1 / 5 shared
Leon, I. De
1 / 1 shared
Korterik, J. P.
1 / 1 shared
Morales-Masis, Monica
2 / 24 shared
Ghobadi, H.
1 / 1 shared
Alvarez-Chavez, Jose Alfredo
1 / 3 shared
Rijnders, Guus
1 / 20 shared
Holovsky, J.
1 / 2 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Offerhaus, Herman
  • Leon, I. De
  • Korterik, J. P.
  • Morales-Masis, Monica
  • Ghobadi, H.
  • Alvarez-Chavez, Jose Alfredo
  • Rijnders, Guus
  • Holovsky, J.
OrganizationsLocationPeople

article

Origins of infrared transparency in highly conductive perovskite stannate BaSnO3

  • Rijnders, Guus
  • Smirnov, Y.
  • Morales-Masis, Monica
  • Holovsky, J.
Abstract

<p>Near-infrared absorption in transparent conducting oxides (TCOs) is usually caused by electronic intraband transition at high doping levels. Improved infrared transparency is commonly explained by enhanced drift mobility in these TCOs. Here, an alternative cause behind the high infrared transparency of La-doped barium stannate (LBSO) transparent electrodes is presented. Following the Drude model formalism, we reconstructed spectrally resolved dielectric permittivity for a set of thin films with different free electron concentrations. A comparison of optical properties of LBSO with the tin-doped indium oxide thin films with identical carrier concentrations suggests that the redshift of the screened plasma wavelength for LBSO originates from its large high-frequency dielectric constant of 4.4, one of the highest reported for the s-orbital-based TCOs. Moreover, our measurements confirm an optical mobility significantly higher (&gt;300 cm2/V s) than the drift mobility, effectively suppressing the free carrier absorption. These factors enable high infrared transparency of LBSO films and motivate further exploration of LBSO as broadband TCOs for solar cells and nanophotonics. </p>

Topics
  • perovskite
  • impedance spectroscopy
  • mobility
  • thin film
  • dielectric constant
  • tin
  • Indium
  • Barium