Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Merino, D. Hermida

  • Google
  • 1
  • 7
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020A filament stretching rheometer for in situ X-ray experiments8citations

Places of action

Chart of shared publication
Suijkerbuijk, Eduard J. M. C.
1 / 2 shared
Cardinaels, Ruth M.
1 / 19 shared
Peters, Gwm Gerrit
1 / 39 shared
Pepe, Jessica
1 / 2 shared
Anderson, Pd Patrick
1 / 50 shared
Dekkers, Erwin C. A.
1 / 2 shared
Cleven, Lucien C.
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Suijkerbuijk, Eduard J. M. C.
  • Cardinaels, Ruth M.
  • Peters, Gwm Gerrit
  • Pepe, Jessica
  • Anderson, Pd Patrick
  • Dekkers, Erwin C. A.
  • Cleven, Lucien C.
OrganizationsLocationPeople

article

A filament stretching rheometer for in situ X-ray experiments

  • Suijkerbuijk, Eduard J. M. C.
  • Cardinaels, Ruth M.
  • Peters, Gwm Gerrit
  • Pepe, Jessica
  • Anderson, Pd Patrick
  • Dekkers, Erwin C. A.
  • Merino, D. Hermida
  • Cleven, Lucien C.
Abstract

<p>We present a rheometer that combines the possibility to perform in situ X-ray experiments with a precise and locally controlled uniaxial extensional flow. It thus allows us to study the crystallization kinetics and morphology evolution combined with the rheological response to the applied flow field. A constant uniaxial deformation rate is ensured, thanks to a fast control scheme that drives the simultaneous movement of the top and bottom plates during a pulling experiment. A laser micrometer measures the time evolution of the smallest diameter, where the highest stress is concentrated. The rheometer has a copper temperature-controlled oven with the ability to reach 250 °C and a N2 connection to create an inert atmosphere during the experiments. The innovation of our rheometer is the fixed location of the midfilament position, which is possible because of the simultaneous controlled movement of the two end plates. The copper oven has been constructed with four ad hoc windows: two glass windows for laser access and two Kapton windows for X-ray access. The key feature is the ability to perfectly align the midfilament of the sample to the laser micrometer and to the incoming X-ray beam in a synchrotron radiation facility, making it possible to investigate the structure and morphologies developed during extensional flow. The rheological response measured with our rheometer for low-density polyethylene (LDPE) is in agreement with the linear viscoelastic envelope and with the results obtained from the existing extensional rheometers. To demonstrate the capability of the instrument, we have performed in situ-resolved X-ray experiments on LDPE samples exhibiting extensional flow-induced crystallization. </p>

Topics
  • density
  • impedance spectroscopy
  • experiment
  • glass
  • glass
  • copper
  • crystallization