People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Knez, Daniel
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (48/48 displayed)
- 2024Nanoscale, surface-confined phase separation by electron beam induced oxidationcitations
- 2024Three-dimensional distribution of individual atoms in the channels of beryl
- 2024Three-dimensional distribution of individual atoms in the channels of berylcitations
- 2024Phase Transitions and Ion Transport in Lithium Iron Phosphate by Atomic‐Scale Analysis to Elucidate Insertion and Extraction Processes in Li‐Ion Batteriescitations
- 2024Challenges and advances regarding LiVPO4: From HR-STEM & EELS to novel scanning diffraction techniques
- 2024STEM exploration of 2DEG at TiO2/LaAlO3 interface
- 2024Gas-Phase Synthesis of Iron Silicide Nanostructures Using a Single-Source Precursorcitations
- 2024Pulsed Laser Deposition using high-power Nd:YAG laser source operating at its first harmonics
- 2024Atom by atom analysis of defect structures in doped STO
- 2023A Guideline to Mitigate Interfacial Degradation Processes in Solid‐State Batteries Caused by Cross Diffusioncitations
- 20232D and 3D STEM Imaging and Spectroscopy: Applications and Perspectives in View of Novel STEM Infrastructure
- 2023Visualizing cellulose chains with cryo scanning transmission electron microscopy
- 2023Phase analysis of (Li)FePO4 by selected area electron diffraction and integrated differential phase contrast imaging
- 2022Phase Analysis of (Li)FePO4 by Selected Area Electron Diffraction in Transmission Electron Microscopy
- 2022Oxygen-Driven Metal–Insulator Transition in SrNbO 3 Thin Films Probed by Infrared Spectroscopycitations
- 2022Oxygen-Driven Metal–Insulator Transition in SrNbO3 Thin Films Probed by Infrared Spectroscopycitations
- 2022Vanadium and Manganese Carbonyls as Precursors in Electron-Induced and Thermal Deposition Processes
- 2022Orbital mapping of the LaAlO3-TiO2 interface by STEM-EELS
- 2022Quantifying Ordering Phenomena at the Atomic Scale in Rare Earth Oxide Ceramics via EELS Elemental Mapping
- 2022In Situ Study of Nanoporosity Evolution during Dealloying AgAu and CoPd by Grazing-Incidence Small-Angle X-ray Scatteringcitations
- 2022In Situ Study of Nanoporosity Evolution during Dealloying AgAu and CoPd by Grazing-Incidence Small-Angle X-ray Scatteringcitations
- 2022Field induced oxygen vacancy migration in anatase thin films studied by in situ biasing TEM
- 2022Precursors for Direct-Write Nanofabrication with Electrons
- 2022Challenges in the characterization of complex nanomaterials with analytical STEM
- 2022Mixed-metal nanoparticlescitations
- 2022Focused Ion Beam vs Focused Electron Beam Deposition of Cobalt Silicide Nanostructures Using Single-Source Precursorscitations
- 2022A Lithium-Silicon Microbattery with Anode and Housing Directly Made from Semiconductor Grade Monocrystalline Sicitations
- 2021Post-processing paths for orbital mapping of rutile by STEM-EELS
- 2021Automatic indexing of two-dimensional patterns in reciprocal space
- 2021Pulsed laser deposition of oxide and metallic thin films by means of Nd:YAG laser source operating at its 1st harmonicscitations
- 2021The Impact of High-Tension on the Orbital Mapping of Rutile by STEM-EELS
- 2021Spectroscopic STEM imaging in 2D and 3D
- 2020Helium droplet assisted synthesis of plasmonic Ag@ZnO core@shell nanoparticlescitations
- 2020Tuning optical absorption of anatase thin lms across the visible/near-infrared spectral regioncitations
- 2020Study on Ca Segregation toward an Epitaxial Interface between Bismuth Ferrite and Strontium Titanatecitations
- 2020Ca segregation towards an in-plane compressive strain Bismuth Ferrite – Strontium Titanate interface
- 2020Unveiling Oxygen Vacancy Superstructures in Reduced Anatase Thin Filmscitations
- 2020Ultrashort XUV pulse absorption spectroscopy of partially oxidized cobalt nanoparticlescitations
- 2019Ultra-thin h-BN substrates for nanoscale plasmon spectroscopycitations
- 2019On the passivation of iron particles at the nanoscalecitations
- 2019The impact of swift electrons on the segregation of Ni-Au nanoalloyscitations
- 2019Effects of the Core Location on the Structural Stability of Ni-Au Core-Shell Nanoparticlescitations
- 2019Atomic Structure Analysis of a Second Order Ruddlesden-Popper Ferrite-a High Resolution STEM Study
- 2018Stability of Core-Shell Nanoparticles for Catalysis at Elevated Temperaturescitations
- 2017Microstructure evolution and mechanical properties of hot deformed Mg9Al1Zn samples containing a friction stir processed zonecitations
- 2017Thermally induced breakup of metallic nanowirescitations
- 2017Inclusions in Si whiskers grown by Ni metal induced lateral crystallizationcitations
- 2016Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography
Places of action
Organizations | Location | People |
---|
article
Ultrashort XUV pulse absorption spectroscopy of partially oxidized cobalt nanoparticles
Abstract
High-order harmonic generation (HHG) based transient extreme ultraviolet (XUV) absorption spectroscopy is an emerging technique to trace photoinduced charge carrier dynamics in condensed phase materials with femtosecond and even attosecond temporal resolution and elemental specificity. However, its application to nanoparticulate samples that are relevant, for example, for novel photocatalytic light harvesting concepts, has been limited. This is in part due to the challenge to produce residual-free samples on ultrathin, XUV-transparent substrates as well as a widespread understanding that sparsely distributed nanoparticles do not provide sufficient contrast for XUV absorption measurements. Here, we present static XUV absorption spectra of partially oxidized Co nanowire-structures with diameters of approximately 4.5 nm and lengths between 10 and 40 nm, recorded with an ultrashort pulse HHG light source. Nanoparticles are synthesized by the agglomeration of Co atoms inside superfluid helium droplets, followed by surface deposition and oxidation in ambient air. The method is uniquely suited for residual-free synthesis of transition metal nanowires and their deposition on ultrathin substrates. Analysis by high-resolution transmission electron microscopy reveals the formation of CoO nanowires with regions of unoxidized Co in their interior. The nanoparticle samples are investigated in an HHG-driven ultrafast XUV absorption setup. Despite the low surface coverage of only 23%, the recorded spectrum exhibits a distinct absorption feature at the Co M2,3(2p) edge near 60 eV with a peak height of about 40 mOD. The results support the feasibility of table-top ultrafast transient XUV absorption studies of photoinduced dynamics in transition metal oxide nanoparticles with sub-monolayer surface coverage.