People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Braga, Mh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2021Direct growth of MoS2 on electrolytic substrate and realization of high-mobility transistorscitations
- 2021Structural Batteries: A Reviewcitations
- 2021An All-Solid-State Coaxial Structural Battery Using Sodium-Based Electrolytecitations
- 2020Performance of a ferroelectric glass electrolyte in a self-charging electrochemical cell with negative capacitance and resistancecitations
- 2020Experimental and ab initio study of the Ag-Li system for energy storage and high-temperature solderscitations
- 2018Formation enthalpy of Ga-Li intermetallic phases. Experiment vs. calculationscitations
- 2018Extraordinary Dielectric Properties at Heterojunctions of Amorphous Ferroelectricscitations
- 2017Electric Dipoles and Ionic Conductivity in a Na+ Glass Electrolytecitations
- 2017First principles, thermal stability and thermodynamic assessment of the binary Ni-W systemcitations
- 2017Alternative strategy for a safe rechargeable batterycitations
- 2015Theoretical investigation of defect structure in B2 TrSc (Tr=Cd, Ru) alloyscitations
- 2014Li-Si phase diagram: Enthalpy of mixing, thermodynamic stability, and coherent assessmentcitations
- 2014Optimization and assessment of the Ag-Ca phase diagramcitations
- 2013Experimental and First Principles Study of the Ni-Ti-W Systemcitations
- 2012Study of the Cu-Li-Mg-H system by thermal analysiscitations
- 2010Neutron powder diffraction and first-principles computational studies of CuLixMg2-x (x congruent to 0.08), CuMg2, and Cu2Mgcitations
- 2007THE BEHAVIOUR OF THE LATTICE PARAMETERS IN THE Bi-Sn-Zn SYSTEMcitations
- 2000The Cu-Li-Mg system at room temperaturecitations
Places of action
Organizations | Location | People |
---|
article
Performance of a ferroelectric glass electrolyte in a self-charging electrochemical cell with negative capacitance and resistance
Abstract
The ability for electrochemical cells to self-charge for extended periods of time is desirable for energy storage applications. While self-oscillation is a phenomenon found in human-made dynamic systems and in nature, its appearance in electrochemical cells has not been reported or anticipated. Here, we chose an electrochemical cell containing two electrodes separated by a self-organizing glass electrolyte containing alkali cations. The ferroelectric character of the electrolyte, with an impressively high dielectric constant of 10(6)-10(7), supported self-charge and self-oscillation. After fabrication, the cells were characterized to determine the electrical impedance, dielectric spectroscopy, and electrochemical discharge. The electrochemical cells also displayed negative resistance and negative capacitance. Negative capacitance is due to the formation of an inverted capacitor between the double-layer capacitor formed at the negative electrode/electrolyte interface and the dipoles of the ferroelectric-electrolyte. Negative resistance is triggered by the formation of an interface phase, which leads to a step-change of the chemical potential of the electrode. The electrochemical cell demonstrates an entanglement between negative resistance, negative capacitance, self-charge, self-cycling, and the activation energy vs thermal energy or external work. The phenomenon of self-cycling is enhanced at low temperatures where the activation energy is higher than the thermal energy. This demonstration extends the Landau-Khalatnikov model for a ferroelectric to a bistable device in which the bistability resides in an electrode. The results reported here reveal the first report of negative capacitance and negative resistance existing in the same process, which can lead to valuable advancements in energy storage devices and in low-frequency applications.