People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kahmann, Simon
Chemnitz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2023The Origin of Broad Emission in ⟨100⟩ Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processes.
- 2023The Origin of Broad Emission in ⟨100⟩ Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processes.
- 2023Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskitescitations
- 2023Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskitescitations
- 2023Tuning the energy transfer in Ruddlesden-Popper perovskites phases through isopropylammonium addition - towards efficient blue emitterscitations
- 2023Tuning the energy transfer in Ruddlesden–Popper perovskites phases through isopropylammonium addition – towards efficient blue emitterscitations
- 2022The Origin of Broad Emission in ⟨100⟩ Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processes.
- 2022The Origin of Broad Emission in ⟨100⟩ Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processescitations
- 2022Taking a closer look - how the microstructure of Dion-Jacobson perovskites governs their photophysics.
- 2022Understanding performance limiting interfacial recombination in pin Perovskite solar cellscitations
- 2022The Origin of Broad Emission in ⟨100»Two-Dimensional Perovskites:Extrinsic vs Intrinsic Processescitations
- 2022The Origin of Broad Emission in â ¨100»Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processes
- 2022Taking a closer look - how the microstructure of Dion-Jacobson perovskites governs their photophysics
- 2022Taking a closer look - how the microstructure of Dion-Jacobson perovskites governs their photophysicscitations
- 2021Photophysics of Two-Dimensional Perovskites—Learning from Metal Halide Substitutioncitations
- 2021Photophysics of Two-Dimensional Perovskites—Learning from Metal Halide Substitution
- 2021Molecular Doping Directed by a Neutral Radicalcitations
- 2021Molecular Doping Directed by a Neutral Radicalcitations
- 2020Negative Thermal Quenching in FASnI3 Perovskite Single Crystals and Thin Filmscitations
- 2020Extrinsic nature of the broad photoluminescence in lead iodide-based Ruddlesden-Popper perovskitescitations
- 2020Negative thermal quenching in FASnI 3 perovskite single crystals and thin filmscitations
- 2020Influence of morphology on photoluminescence properties of methylammonium lead tribromide filmscitations
- 2019Hot carrier solar cells and the potential of perovskites for breaking the Shockley-Queisser limitcitations
- 2019Favorable Mixing Thermodynamics in Ternary Polymer Blends for Realizing High Efficiency Plastic Solar Cellscitations
- 2019Photophysical and electronic properties of bismuth-perovskite shelled lead sulfide quantum dotscitations
- 2019The Impact of Stoichiometry on the Photophysical Properties of Ruddlesden-Popper Perovskitescitations
- 2019Effects of strontium doping on the morphological, structural, and photophysical properties of FASnI(3) perovskite thin filmscitations
- 2019Cooling, Scattering, and Recombination-The Role of the Material Quality for the Physics of Tin Halide Perovskitescitations
- 2018Donor- acceptor photoexcitation dynamics in organic blends investigated with a high sensitivity pump- probe systemcitations
- 2015Opto-electronics of PbS quantum dot and narrow bandgap polymer blendscitations
Places of action
Organizations | Location | People |
---|
article
Photophysical and electronic properties of bismuth-perovskite shelled lead sulfide quantum dots
Abstract
Metal halide perovskite shelled quantum dot solids have recently emerged as an interesting class of solution-processable materials that possess the desirable electronic properties of both quantum dots and perovskites. Recent reports have shown that lead sulfide quantum dots (PbS QDs) with perovskite ligand-shells can be successfully utilized in (opto)electronic devices such as solar cells, photoconductors, and field-effect transistors (FETs), a development attributed to the compatibility of lattice parameters between PbS and certain metal halide perovskites that results in the growth of the perovskite shell on the PbS QDs. Of several possible perovskite combinations used with PbS QDs, bismuth-based variants have been shown to have the lowest lattice mismatch and to display excellent performance in photoconductors. However, they also display photoluminescence (PL), which is highly sensitive to surface defects. In this work, we present an investigation of the transport and optical properties of two types of bismuth-based perovskite (MA(3)BiI(6) and MA(3)Bi(2)I(9)) shelled PbS QDs. Our photophysical study using temperature-dependent PL spectroscopy between 5 and 290 K indicates that the PL efficiency of the reference oleic acid (OA) capped samples is much higher than that of the Bi-shelled ones, which suffer from traps, most likely formed at their surfaces during the phase-transfer ligand exchange process. Nevertheless, the results from electrical measurements on FETs show the successful removal of the native-OA ligands, displaying electron dominated transport with modest mobilities of around 10(-3) cm(2) [V s](-1) - comparable to the reported values for epitaxial Pb-based shelled samples. These findings advance our understanding of perovskite shelled QD-solids and point to the utility of these Bi-based variants as contenders for photovoltaic and other optoelectronic applications. Published under license by AIP Publishing.