Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Imai, Kosuke

  • Google
  • 1
  • 7
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Critical concentrations of Zn and Mg for enhanced diamagnetism in Al-Zn-Mg alloys2citations

Places of action

Chart of shared publication
Isikawa, Yosikazu
1 / 2 shared
Hutchison, Wayne D.
1 / 2 shared
Tsuchiya, Taiki
1 / 2 shared
Matsuda, Kenji
1 / 13 shared
Nunomura, Norio
1 / 2 shared
Bendo, Artenis
1 / 7 shared
Adachi, Hiroki
1 / 3 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Isikawa, Yosikazu
  • Hutchison, Wayne D.
  • Tsuchiya, Taiki
  • Matsuda, Kenji
  • Nunomura, Norio
  • Bendo, Artenis
  • Adachi, Hiroki
OrganizationsLocationPeople

article

Critical concentrations of Zn and Mg for enhanced diamagnetism in Al-Zn-Mg alloys

  • Isikawa, Yosikazu
  • Hutchison, Wayne D.
  • Tsuchiya, Taiki
  • Matsuda, Kenji
  • Nunomura, Norio
  • Bendo, Artenis
  • Imai, Kosuke
  • Adachi, Hiroki
Abstract

<jats:p>Temperature and time dependences of the magnetization of Al-Zn-Mg alloys with varying Zn to Mg ratios (Zn/Mg = 0.25, 0.5, 1, 2, 5.5, and 9, keeping the total concentration of Zn plus Mg to be 5 at. %) were studied in the range from 10 to 310 K after various periods of natural aging. In particular, for Al1−y(Mg2Zn11)y alloys, the total concentrations of Zn and Mg were also varied from 2 to 20 at. % (y = 0.02, 0.03, 0.04, 0.05, 0.1, and 0.2). The largest time variant enhanced diamagnetism was observed for Al0.95(Mg2Zn11)0.05 as a result of solution heat treatment/quenching and natural aging. Isothermal measurements of magnetization vs time for natural aging temperatures from 260 to 300 K for Al0.95(Mg2Zn11)0.05 provided activation energies for solute clustering: 0.69 ± 0.05 eV (for stages I and II) and 0.78 ± 0.03 eV (for stages II and III). The mechanical hardness vs time at 273 K for Al0.95(Mg2Zn11)0.05 confirmed that the time variation of magnetization was related to the precipitation process of Zn/Mg/vacancy zones. Additionally, temperature dependences of the magnetization of Mg21Zn25, Mg4Zn7, MgZn2, and Mg2Zn11 were examined. The observed magnetization for the Mg-Zn compounds was found to be too small to account for the enhanced diamagnetic contributions to magnetization of Al-Zn-Mg alloys. A possible Zn-Mg-vacancy atomic arrangement responsible for the enhanced diamagnetism is discussed.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • hardness
  • precipitation
  • aging
  • activation
  • magnetization
  • clustering
  • aging
  • quenching
  • vacancy