People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Denneulin, Thibaud
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Direct observation of altermagnetic band splitting in CrSb thin filmscitations
- 2024Identifying the Origin of Thermal Modulation of Exchange Bias in MnPS 3 /Fe 3 GeTe 2 van der Waals Heterostructurescitations
- 2024Interfacial spin-orbitronic effects controlled with different oxidation levels at the Co|Al interface
- 2024Identifying the Origin of Thermal Modulation of Exchange Bias in MnPS<sub>3</sub>/Fe<sub>3</sub>GeTe<sub>2</sub> van der Waals Heterostructurescitations
- 2023Current-driven writing process in antiferromagnetic Mn2Au for memory applicationscitations
- 2023Large Interfacial Rashba Interaction Generating Strong Spin–Orbit Torques in Atomically Thin Metallic Heterostructurescitations
- 2023Large interfacial Rashba interaction and resultant dominating field- like torque in atomically thin metallic heterostructurescitations
- 2023Role of heterophase interfaces on local coercivity mechanisms in the magnetic Al0.3CoFeNi complex concentrated alloycitations
- 2021Readout of an antiferromagnetic spintronics system by strong exchange coupling of Mn2Au and Permalloycitations
- 2020Ferroelectric State in an α-Nd 2 WO 6 Polymorph Stabilized in a Thin Filmcitations
- 2020Temperature-independent giant dielectric response in transitional BaTiO 3 thin filmscitations
- 2020Temperature-independent giant dielectric response in transitional BaTiO3 thin filmscitations
- 2020Temperature-independent giant dielectric response in transitional BaTiO3 thin filmscitations
- 2020Temperature-independent giant dielectric response in transitional BaTiO3 thin filmscitations
- 2019Structural and chemical investigation of interface related magnetoelectric effect in Ni/BiFe0.95Mn0.05O3 heterostructurescitations
- 2018Advanced GeSn/SiGeSn Group IV Heterostructure Laserscitations
- 2017Lattice reorientation in tetragonal PMN-PT thin film induced by focused ion beam preparation for transmission electron microscopycitations
- 2016Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscopecitations
- 2015HRTEM Studies of Stress Assisted Sintered BaLa4Ti4O15citations
Places of action
Organizations | Location | People |
---|
article
Temperature-independent giant dielectric response in transitional BaTiO3 thin films
Abstract
<jats:p>Ferroelectric materials exhibit the largest dielectric permittivities and piezoelectric responses in nature, making them invaluable in applications from supercapacitors or sensors to actuators or electromechanical transducers. The origin of this behavior is their proximity to phase transitions. However, the largest possible responses are most often not utilized due to the impracticality of using temperature as a control parameter and to operate at phase transitions. This has motivated the design of solid solutions with morphotropic phase boundaries between different polar phases that are tuned by composition and that are weakly dependent on temperature. Thus far, the best piezoelectrics have been achieved in materials with intermediate (bridging or adaptive) phases. But so far, complex chemistry or an intricate microstructure has been required to achieve temperature-independent phase-transition boundaries. Here, we report such a temperature-independent bridging state in thin films of chemically simple BaTiO3. A coexistence among tetragonal, orthorhombic, and their bridging low-symmetry phases are shown to induce continuous vertical polarization rotation, which recreates a smear in-transition state and leads to a giant temperature-independent dielectric response. The current material contains a ferroelectric state that is distinct from those at morphotropic phase boundaries and cannot be considered as ferroelectric crystals. We believe that other materials can be engineered in a similar way to contain a ferroelectric state with gradual change of structure, forming a class of transitional ferroelectrics. Similar mechanisms could be utilized in other materials to design low-power ferroelectrics, piezoelectrics, dielectrics, or shape-memory alloys, as well as efficient electro- and magnetocalorics.</jats:p>