People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Juraszek, Jean
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023In-depth study of structural, magnetic and XPS behavior of the double perovskite La2-xCex/2Erx/2NiMnO6citations
- 2021Thermopower in the Ba 1−δ M 2+x Ru 4−x O 11 (M = Co, Mn, Fe) magnetic hexagonal ruthenates
- 2021Long-Range Cationic Order Collapse Triggered by S/Cl Mixed-Anion Occupancy Yields Enhanced Thermoelectric Properties in Cu5Sn2S7citations
- 2020Influence of the electronic polymorphism of Ni on the classification and design of high entropy alloyscitations
- 2020Structure and magnetic properties of epitaxial CaFe2O4 thin filmscitations
- 2020Interfacial Strain Gradients Control Nanoscale Domain Morphology in Epitaxial BiFeO 3 Multiferroic Filmscitations
- 2020Origin of the magnetic properties of Fe-implanted 4H-SiC semiconductorcitations
- 2020Non-auxetic/auxetic transitions inducing modifications of the magnetic anisotropy in CoFe2O4 thin filmscitations
- 2020A scalable synthesis route for multiscale defect engineering in the sustainable thermoelectric quaternary sulfide Cu26V2Sn6S32citations
- 2020Interfacial Strain Gradients Control Nanoscale Domain Morphology in Epitaxial BiFeO3 Multiferroic Filmscitations
- 2019Characterization of nanostructure in low dose Fe-implanted p-type 6H-SiC using atom probe tomographycitations
- 2019A magnetic phase diagram for nanoscale epitaxial BiFeO3 filmscitations
- 2019A magnetic phase diagram for nanoscale epitaxial BiFeO3 filmscitations
- 20186H-SiC-Fe Nanostructures Studied by Atom Probe Tomographycitations
- 2014Control of ferroelectricity and magnetism in multi-ferroic BiFeO3 by epitaxial straincitations
- 2013A Mössbauer investigation of the formation of the Ni3Fe phase by high energy ball milling and subsequent annealingcitations
- 2013A Mössbauer investigation of the formation of the Ni3Fe phase by high energy ball milling and subsequent annealingcitations
- 2004CEMS Investigations of Swift Heavy Ion Irradiation Effects in Tb/Fe Multilayerscitations
Places of action
Organizations | Location | People |
---|
article
A magnetic phase diagram for nanoscale epitaxial BiFeO3 films
Abstract
<jats:p>BiFeO3 thin films have attracted considerable attention by virtue of their potential application in low-energy spintronic and magnonic devices. BiFeO3 possesses an intricate magnetic structure, characterized by a spin cycloid with period ∼62 nm that governs the functional magnonic response, and which can be modulated or even destroyed by strain, magnetic and electric fields, or chemical doping. The literature on (110)-oriented BiFeO3 films is not explicit in defining the conditions under which this cycloid persists, as its presence depends on synthesis method and thin-film boundary conditions, especially in the sub-100 nm thickness regime. This report aims to end “trial and error” approaches in determining the conditions under which this cycloid and its associated functional magnonic response exist. We show that in specific crystallographic orientations of epitaxial BiFeO3, an unexplored strain parameter—the distortion in the ab plane of the monoclinic unit cell—significantly influences the spin structure. Combining Mössbauer spectroscopy and low-energy Raman spectroscopy with first-principles-based effective Hamiltonian calculations, we show that both average strain and this distortion destroy the cycloid. For films grown on (110)-oriented SrTiO3 substrates, if the BiFeO3 lattice parameters a and b differ by more than about 1.2%, the cycloid is destabilized, resulting in a pseudocollinear magnetic order ground state. We are thereby able to construct a phase diagram of the spin structure for nanoscale epitaxial BiFeO3 films, which aims to resolve long-standing literature inconsistencies and provide powerful guidelines for the design of future magnonic and spintronic devices.</jats:p>