People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thürer, Susanne Elisabeth
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Non-destructive, Contactless and Real-Time Capable Determination of the α’-Martensite Content in Modified Subsurfaces of AISI 304
- 2022Non-destructive Evaluation of Workpiece Properties along the Hybrid Bearing Bushing Process Chaincitations
- 2022Characterization of the Interface between Aluminum and Iron in Co-Extruded Semi-Finished Productscitations
- 2021Process chain for the manufacture of hybrid bearing bushingscitations
- 2020Characterization and modeling of intermetallic phase formation during the joining of aluminum and steel in analogy to co-extrusion
- 2020Characterization and modeling of intermetallic phase formation during the joining of aluminum and steel in analogy to co-extrusioncitations
- 2020Lateral angular co-extrusioncitations
- 2020Lateral angular co-extrusion: Geometrical and mechanical properties of compound profiles
- 2019Numerical modeling of the development of intermetallic layers between aluminium and steel during co-extrusioncitations
- 2017Mechanical properties of co-extruded aluminium-steel compounds
Places of action
Organizations | Location | People |
---|
document
Numerical modeling of the development of intermetallic layers between aluminium and steel during co-extrusion
Abstract
<p>Undergoing the Tailored Forming process chain, coaxial aluminium-steel profiles joined by co-extrusion are formed into hybrid bearing bushings by die forging. During the joining of aluminium and steel, intermetallic phases may develop. As these phases are very hard and brittle, it is important to be able to predict the width of the resulting intermetallic layer because it is likely to reduce the strength of the compound for the subsequent forging step. In the scope of this paper, a possibility for numerical calculation of the resulting phase thickness during the co-extrusion of aluminium and steel, by means of Lateral Angular Co-Extrusion (LACE), is presented. In the first step, an analogy test on a forming dilatometer was developed for the experimental investigation of the intermetallic phase formation. The width of the intermetallic phase seam was determined by means of scanning electron microscopy using an image processing tool. Based on the experimental results, a calculation instruction was defined to describe the intermetallic phase thickness as a function of temperature and contact time. The function was implemented in a commercial finite element (FE) software by means of a user-defined subroutine and validated on the basis of experimental data.</p>