Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cometa, A.

  • Google
  • 2
  • 7
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Computing Sheet Rolling Instabilities with a Shell Finite Element Modelcitations
  • 2019Experimental investigation of pinching phenomena in cold rolling of thin steel sheets2citations

Places of action

Chart of shared publication
Havinga, Jos
1 / 5 shared
Van Den Boogaard, Ton
2 / 135 shared
Geijselaers, Hubert
2 / 31 shared
Kampmeijer, L.
1 / 3 shared
Jacobs, L. J. M.
1 / 5 shared
Wentink, D. J.
1 / 3 shared
Hol, C. W. J.
1 / 1 shared
Chart of publication period
2023
2019

Co-Authors (by relevance)

  • Havinga, Jos
  • Van Den Boogaard, Ton
  • Geijselaers, Hubert
  • Kampmeijer, L.
  • Jacobs, L. J. M.
  • Wentink, D. J.
  • Hol, C. W. J.
OrganizationsLocationPeople

document

Experimental investigation of pinching phenomena in cold rolling of thin steel sheets

  • Kampmeijer, L.
  • Jacobs, L. J. M.
  • Cometa, A.
  • Van Den Boogaard, Ton
  • Wentink, D. J.
  • Hol, C. W. J.
  • Geijselaers, Hubert
Abstract

<p>During rolling of metal sheets defects may occur, such as local waviness, surface ruptures, and sometimes strip breaks. These phenomena, commonly referred to as 'pinching', have been observed in combination with snaking problems (strip sidewards movements) during tailing out, but even in continuous rolling processes. Severe pinches compromise the quality of the strip and damage to the work rolls can also be caused. This clearly affects the production, resulting in low product quality, process delays and, consequently, in extra costs. Even though pinching is a widely experienced issue, during both hot and cold rolling, it is not clear what mechanism is behind it. Pinches occur due to disruptions in the rolling process, therefore pinching sensitive operative regimes need to be identified such that mill operations can be performed in a way that keeps the process stable. Currently, pinching cannot be predicted by rolling simulation models due to the lack of knowledge about the circumstances leading to pinches. Therefore, rolling experiments were performed at the pilot mill in Tata Steel (IJmuiden), in order to understand under which process conditions pinches are more likely to occur. It is shown that pinching phenomena can be created in a single-stand mill, being triggered by perturbations introduced during the steady-state rolling process. Specifically, the lubrication level has been detected as an underlying factor, playing a role in the occurrence of these phenomena. An extensive characterization of pinching defects is provided within the field of metal rolling. Furthermore, part of a possible mechanism for pinches is discussed, based on the experimental evidence of the pinching tests. The aim of this work is to contribute to a more fundamental understanding of pinching, as a crucial step towards the prediction of these defects.</p>

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • simulation
  • steel
  • defect
  • cold rolling