People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vera-Marun, Ivan J.
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2021Tuneable spin injection in high-quality graphene with one-dimensional contacts
- 2021Comparison of Mechanical Properties of Carbon Fibre and Kaolin Reinforced Polypropylene Compositescitations
- 2020Two-dimensional van der Waals spinterfaces and magnetic-interfacescitations
- 2018Efficient injection and detection of out-of-plane spins via the anomalous spin Hall effect in permalloy nanowirescitations
- 2017Spin Injection and Detection via the Anomalous Spin Hall Effect of a Ferromagnetic Metalcitations
- 2017Edge currents shunt the insulating bulk in gapped graphenecitations
- 2017Magnetoresistance of vertical Co-graphene-NiFe junctions controlled by charge transfer and proximity-induced spin splitting in graphenecitations
- 2017Magnetoresistance of vertical Co-graphene-NiFe junctions controlled by charge transfer and proximity-induced spin splitting in graphenecitations
- 2012Nonlinear detection of spin currents in graphene with non-magnetic electrodescitations
- 2012Nonlinear detection of spin currents in graphene with non-magnetic electrodescitations
Places of action
Organizations | Location | People |
---|
article
Two-dimensional van der Waals spinterfaces and magnetic-interfaces
Abstract
Two-dimensional (2D) materials have brought fresh prospects for spintronics, as evidenced by the rapid scientific progress made in this frontier over the past decade. In particular, for charge perpendicular to plane vertical magnetic tunnel junctions, the 2D crystals present exclusive features such as atomic-level thickness control, near-perfect crystallography without dangling bonds, and novel electronic structure-guided interfaces with tunable hybridization and proximity effects, which lead to an entirely new group of spinterfaces. Such crystals also present new ways of integration of atomically thin barriers in magnetic tunnel junctions and an unprecedented means for developing composite barriers with atomic precision. All these new aspects have sparked interest for theoretical and experimental efforts, revealing intriguing spin-dependent transport and spin inversion effects. Here, we discuss some of the distinctive effects observed in ferromagnetic junctions with prominent 2D crystals such as graphene, hexagonal boron nitride, and transition metal dichalcogenides and how spinterface phenomena at such junctions affect the observed magnetoresistance in devices. Finally, we discuss how the recently emerged 2D ferromagnets bring upon an entirely novel category of van der Waals interfaces for efficient spin transmission and dynamic control through exotic heterostructures.