Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cleven, Lucien

  • Google
  • 2
  • 7
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019A novel experimental setup for in-situ optical and X-ray imaging of laser sintering of polymer particles18citations
  • 2019A novel experimental setup for in-situ optical and X-ray imaging of laser sintering of polymer particlescitations

Places of action

Chart of shared publication
Cardinaels, Ruth M.
1 / 19 shared
Anderson, Pd Patrick
2 / 50 shared
Hejmady, Prakhyat
1 / 3 shared
Van Breemen, Lambèrt C. A.
1 / 34 shared
Cardinaels, Rm Ruth
1 / 12 shared
Breemen, Lca Lambèrt Van
1 / 13 shared
Hejmady, P. Prakhyat
1 / 3 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Cardinaels, Ruth M.
  • Anderson, Pd Patrick
  • Hejmady, Prakhyat
  • Van Breemen, Lambèrt C. A.
  • Cardinaels, Rm Ruth
  • Breemen, Lca Lambèrt Van
  • Hejmady, P. Prakhyat
OrganizationsLocationPeople

article

A novel experimental setup for in-situ optical and X-ray imaging of laser sintering of polymer particles

  • Cardinaels, Ruth M.
  • Anderson, Pd Patrick
  • Cleven, Lucien
  • Hejmady, Prakhyat
  • Van Breemen, Lambèrt C. A.
Abstract

We present a unique laser sintering setup that allows real time studies of the structural evolution during laser sintering of polymer particles. The device incorporates the main features of classical selective laser sintering machines for 3D printing of polymers and at the same time allows in situ visualization of the sintering dynamics with optical microscopy as well as X-ray scattering. A main feature of the setup is the fact that it provides local access to one particle-particle bridge during sintering. In addition, due to the small scale of the device and the specific laser arrangement process, parameters such as the temperature, laser energy, laser pulse duration, and spot size can be precisely controlled. The sample chamber provides heating up to 360 °C, which allows for sintering of commodity as well as high performance polymers. The latter parameters are controlled by the use of a visible light laser combined with an acousto-optic modulator for pulsing, which allows small and precise spot sizes and pulse times and pulse energies as low as 500 μs and 17 μJ. The macrostructural evolution of the particle bridge during sintering is followed via optical imaging at high speed and resolution. Placing the setup in high flux synchrotron radiation with a fast detector simultaneously allows in situ time-resolved X-ray characterizations. To demonstrate the capabilities of the device, we studied the laser sintering of two spherical PA12 particles. The setup provides crucial real-time information concerning the sintering dynamics as well as crystallization kinetics, which was not accessible up to now.

Topics
  • impedance spectroscopy
  • polymer
  • optical microscopy
  • crystallization
  • sintering
  • laser sintering
  • X-ray scattering