People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cardinaels, Ruth M.
KU Leuven
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Numerical simulation of fiber orientation kinetics and rheology of fiber-filled polymers in uniaxial extensioncitations
- 2024In situ experimental investigation of fiber orientation kinetics during uniaxial extensional flow of polymer compositescitations
- 2024A monolithic numerical model to predict the EMI shielding performance of lossy dielectric polymer nanocomposite shields in a rectangular waveguidecitations
- 2023A generalized mechano-statistical transient network model for unravelling the network topology and elasticity of hydrophobically associating multiblock copolymers in aqueous solutionscitations
- 2023Melt-Extruded Thermoplastic Liquid Crystal Elastomer Rotating Fiber Actuatorscitations
- 2023Melt-Extruded Thermoplastic Liquid Crystal Elastomer Rotating Fiber Actuatorscitations
- 2023Photoswitchable Liquid-to-Solid Transition of Azobenzene-Decorated Polysiloxanescitations
- 2022Laser sintering of PA12 particles studied by in-situ optical, thermal and X-ray characterizationcitations
- 2021Bio‐Based Poly(3‑hydroxybutyrate)/Thermoplastic Starch Composites as a Host Matrix for Biochar Fillerscitations
- 2020A filament stretching rheometer for in situ X-ray experimentscitations
- 2020Optimization of Anti-kinking Designs for Vascular Grafts Based on Supramolecular Materialscitations
- 2020Optimization of Anti-kinking Designs for Vascular Grafts Based on Supramolecular Materialscitations
- 2020Polymer spheres
- 2019A novel experimental setup for in-situ optical and X-ray imaging of laser sintering of polymer particlescitations
- 2019Laser sintering of polymer particle pairs studied by in-situ visualizationcitations
- 2018Thin film mechanical characterization of UV-curing acrylate systemscitations
- 2018Designing multi-layer polymeric nanocomposites for EM shielding in the X-bandcitations
- 2017Future nanocomposites : exploring multifunctional multi-layered architectures
- 2017Experimental setup for in situ visualization studies of laser sintering of polymer particles
Places of action
Organizations | Location | People |
---|
article
A novel experimental setup for in-situ optical and X-ray imaging of laser sintering of polymer particles
Abstract
We present a unique laser sintering setup that allows real time studies of the structural evolution during laser sintering of polymer particles. The device incorporates the main features of classical selective laser sintering machines for 3D printing of polymers and at the same time allows in situ visualization of the sintering dynamics with optical microscopy as well as X-ray scattering. A main feature of the setup is the fact that it provides local access to one particle-particle bridge during sintering. In addition, due to the small scale of the device and the specific laser arrangement process, parameters such as the temperature, laser energy, laser pulse duration, and spot size can be precisely controlled. The sample chamber provides heating up to 360 °C, which allows for sintering of commodity as well as high performance polymers. The latter parameters are controlled by the use of a visible light laser combined with an acousto-optic modulator for pulsing, which allows small and precise spot sizes and pulse times and pulse energies as low as 500 μs and 17 μJ. The macrostructural evolution of the particle bridge during sintering is followed via optical imaging at high speed and resolution. Placing the setup in high flux synchrotron radiation with a fast detector simultaneously allows in situ time-resolved X-ray characterizations. To demonstrate the capabilities of the device, we studied the laser sintering of two spherical PA12 particles. The setup provides crucial real-time information concerning the sintering dynamics as well as crystallization kinetics, which was not accessible up to now.