People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nguyen-Manh, Duc
United Kingdom Atomic Energy Authority
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Microstructural evolution and transmutation in tungsten under ion and neutron irradiationcitations
- 2023A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environmentscitations
- 2022Mechanical characterisation of V-4Cr-4Ti alloy:Tensile tests under high energy synchrotron diffractioncitations
- 2022Mechanical characterisation of V-4Cr-4Ti alloycitations
- 2021Advanced self-passivating alloys for an application under extreme conditionscitations
- 2021Elastic dipole tensors and relaxation volumes of point defects in concentrated random magnetic Fe-Cr alloyscitations
- 2020Relaxation volumes of microscopic and mesoscopic irradiation-induced defects in tungstencitations
- 2019Relaxation volumes of microscopic and mesoscopic irradiation-induced defects in tungstencitations
- 2019Configurational Entropy in Multicomponent Alloys: Matrix Formulation from Ab Initio Based Hamiltonian and Application to the FCC Cr-Fe-Mn-Ni Systemcitations
- 2017An empirical potential for simulating vacancy clusters in tungstencitations
- 2005Electronic structure of complex Hume-Rothery phases and quasicrystals in transition metal aluminidescitations
Places of action
Organizations | Location | People |
---|
article
Relaxation volumes of microscopic and mesoscopic irradiation-induced defects in tungsten
Abstract
International audience ; The low energy structures of irradiation-induced defects in materials have been extensively studied overseveral decades, as these determine the available modes by which a defect can diffuse or relax, and how themicrostructure of an irradiated material evolves as a function of temperature and time. Consequently manystudies concern the relative energies of possible defect structures, and empirical potentials are commonlyfitted to, or evaluated with respect to these. But recently [Dudarev et al. Nuclear Fusion 2018], we haveshown that other parameters of defects not directly related to defect energies, namely their elastic dipoletensors and relaxation volumes, determine the stresses, strains and swelling of reactor components underirradiation. These elastic properties of defects have received comparatively little attention. In this studywe compute relaxation volumes of irradiation-induced defects in tungsten using empirical potentials, andcompare to density functional theory results. Different empirical potentials give different results, but someclear potential-independent trends can be identifed. We show that the relaxation volume of a small defectcluster can be predicted to within 10% from its point-defect count. For larger defect clusters we provideempirical fits as a function of defect cluster size. We demonstrate that the relaxation volume associated witha single primary-damage cascade can be estimated from the primary knock-on atom energy. We concludethat while annihilation of defects invariably reduces the total relaxation volume of the cascade debris, thereis still no conclusive verdict about whether coalescence of defects reduces or increases the total relaxation volume.