Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kocabas, Coskun

  • Google
  • 9
  • 31
  • 390

University of Manchester

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Synergistic Improvement in the Thermal Conductivity of Hybrid Boron Nitride Nanotube/Nanosheet Epoxy Composites6citations
  • 2020Multifunctional Biocomposites Based on Polyhydroxyalkanoate and Graphene/Carbon Nanofiber Hybrids for Electrical and Thermal Applications59citations
  • 2019Fourier transform plasmon resonance spectrometer using nanoslit-nanowire pair9citations
  • 2019Fourier transform plasmon resonance spectrometer using nanoslit-nanowire pair9citations
  • 2019Ultra-lightweight Chemical Vapor Deposition grown multilayered graphene coatings on paper separator as interlayer in lithium-sulfur batteries25citations
  • 2018NLL-Assisted Multilayer Graphene Patterning16citations
  • 2018Electrically switchable metadevices via graphene133citations
  • 2018Electrically switchable metadevices via graphene133citations
  • 2018Electrically switchable metadevices via graphene.citations

Places of action

Chart of shared publication
Bissett, Mark A.
2 / 20 shared
Steiner, Pietro
2 / 2 shared
Kinloch, Ian A.
2 / 59 shared
Mohanraman, Rajeshkumar
1 / 1 shared
Cataldi, Pietro
1 / 13 shared
Raine, Thomas
1 / 3 shared
Papageorgiou, Dimitrios G.
1 / 60 shared
Young, Robert J.
1 / 67 shared
Lin, Kailing
1 / 1 shared
Yakar, Ozan
2 / 2 shared
Ashirov, Timur
2 / 2 shared
Uulu, Doolos Aibek
2 / 2 shared
Öztoprak, Nahit
1 / 2 shared
Polat, Nahit
1 / 2 shared
Balci, Sinan
3 / 3 shared
Demir-Cakan, Rezan
1 / 11 shared
Salihoglu, Omer
1 / 1 shared
Cengiz, Elif Ceylan
1 / 1 shared
Ozturk, Osman
1 / 2 shared
Pavlov, Ihor
1 / 2 shared
Ilday, F. Ömer
1 / 1 shared
Deminskyi, Petro
1 / 7 shared
Kovalska, Evgeniya
1 / 3 shared
Baldycheva, Anna
1 / 2 shared
Karademir, Ertugrul
2 / 2 shared
Balci, Osman
2 / 4 shared
Özbay, Ekmel
2 / 2 shared
Polat, Emre O.
2 / 2 shared
Kakenov, Nurbek
2 / 2 shared
Caglayan, Humeyra
2 / 19 shared
Cakmakyapan, Semih
2 / 2 shared
Chart of publication period
2024
2020
2019
2018

Co-Authors (by relevance)

  • Bissett, Mark A.
  • Steiner, Pietro
  • Kinloch, Ian A.
  • Mohanraman, Rajeshkumar
  • Cataldi, Pietro
  • Raine, Thomas
  • Papageorgiou, Dimitrios G.
  • Young, Robert J.
  • Lin, Kailing
  • Yakar, Ozan
  • Ashirov, Timur
  • Uulu, Doolos Aibek
  • Öztoprak, Nahit
  • Polat, Nahit
  • Balci, Sinan
  • Demir-Cakan, Rezan
  • Salihoglu, Omer
  • Cengiz, Elif Ceylan
  • Ozturk, Osman
  • Pavlov, Ihor
  • Ilday, F. Ömer
  • Deminskyi, Petro
  • Kovalska, Evgeniya
  • Baldycheva, Anna
  • Karademir, Ertugrul
  • Balci, Osman
  • Özbay, Ekmel
  • Polat, Emre O.
  • Kakenov, Nurbek
  • Caglayan, Humeyra
  • Cakmakyapan, Semih
OrganizationsLocationPeople

article

Fourier transform plasmon resonance spectrometer using nanoslit-nanowire pair

  • Kocabas, Coskun
  • Yakar, Ozan
  • Ashirov, Timur
  • Uulu, Doolos Aibek
  • Öztoprak, Nahit
Abstract

<jats:p>In this paper, we present a nanoscale Fourier transform spectrometer using a plasmonic interferometer consisting of a tilt subwavelength slit-nanowire pair on a metallic surface fabricated by the focused ion beam microfabrication technique. The incident broadband light strongly couples with the surface plasmons on the gold surface, and thus, surface plasmon polaritons (SPPs) are generated. The launched SPPs interfere with the incident light and generate high contrast interference fringes in the nanoslit. The transmitted SPPs through the metal nanoslit can decouple into free space and are collected by an objective in the far field. The spectroscopic information of the incidence light is obtained by fast Fourier transform of the fringe pattern of the SPPs. In our design, there is no need for a bulky dispersive spectrometer or dispersive optical elements. The dimension of the spectrometer is around 200 μm length. Our design is based on inherent coherence of the SPP waves propagating through the subwavelength metal nanoslit structures etched into an opaque gold film.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • gold
  • focused ion beam