Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mancini, Giulia Fulvia

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Local photo-mechanical stiffness revealed in gold nanoparticles supracrystals by ultrafast small-angle electron diffraction1citations

Places of action

Chart of shared publication
Latychevskaia, Tatiana
1 / 1 shared
Stellacci, Francesco
1 / 11 shared
Carbone, Fabrizio
1 / 4 shared
Reguera, Javier
1 / 9 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Latychevskaia, Tatiana
  • Stellacci, Francesco
  • Carbone, Fabrizio
  • Reguera, Javier
OrganizationsLocationPeople

article

Local photo-mechanical stiffness revealed in gold nanoparticles supracrystals by ultrafast small-angle electron diffraction

  • Latychevskaia, Tatiana
  • Mancini, Giulia Fulvia
  • Stellacci, Francesco
  • Carbone, Fabrizio
  • Reguera, Javier
Abstract

<jats:p>We demonstrate that highly ordered two-dimensional crystals of ligand-capped gold nanoparticles display a local photo-mechanical stiffness as high as that of solids such as graphite. In out-of-equilibrium electron diffraction experiments, a strong temperature jump is induced in a thin film with a femtosecond laser pulse. The initial electronic excitation transfers energy to the underlying structural degrees of freedom, with a rate generally proportional to the stiffness of the material. Using femtosecond small-angle electron diffraction, we observe the temporal evolution of the diffraction feature associated with the nearest-neighbor nanoparticle distance. The Debye-Waller decay for the octanethiol-capped nanoparticle supracrystal, in particular, is found to be unexpectedly fast, almost as fast as the stiffest solid known and observed by the same technique, i.e., graphite. Our observations unravel that local stiffness in a dense supramolecular assembly can be created by van der Waals interactions up to a level comparable to crystalline systems characterized by covalent bonding.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • experiment
  • thin film
  • electron diffraction
  • gold
  • two-dimensional