People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Adjokatse, Sampson
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskitescitations
- 2023Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskitescitations
- 2021Photophysics of Two-Dimensional Perovskites—Learning from Metal Halide Substitutioncitations
- 2020Broad Tunability of Carrier Effective Masses in Two-Dimensional Halide Perovskitescitations
- 2020Unraveling the Microstructure of Layered Metal Halide Perovskite Filmscitations
- 2020Unraveling the Microstructure of Layered Metal Halide Perovskite Filmscitations
- 2020Stable cesium formamidinium lead halide perovskites: a comparison of photophysics and phase purity in thin films and single crystalscitations
- 2020Influence of morphology on photoluminescence properties of methylammonium lead tribromide filmscitations
- 2019Stable Cesium Formamidinium Lead Halide Perovskitescitations
- 2019Mechanism of surface passivation of methylammonium lead tribromide single crystals by benzylaminecitations
- 2019Mechanism of surface passivation of methylammonium lead tribromide single crystals by benzylaminecitations
- 2019Scalable fabrication of high-quality crystalline and stable FAPbI(3) thin films by combining doctor-blade coating and the cation exchange reactioncitations
- 2019Scalable fabrication of high-quality crystalline and stable FAPbI(3) thin films by combining doctor-blade coating and the cation exchange reactioncitations
- 2019The Impact of Stoichiometry on the Photophysical Properties of Ruddlesden-Popper Perovskitescitations
- 2019Stable Cesium Formamidinium Lead Halide Perovskites:A Comparison of Photophysics and Phase Purity in Thin Films and Single Crystalscitations
- 2019Effects of strontium doping on the morphological, structural, and photophysical properties of FASnI(3) perovskite thin filmscitations
- 2017Broadly tunable metal halide perovskites for solid-state light-emission applicationscitations
- 2016N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stabilitycitations
- 2015Photophysics of Organic-Inorganic Hybrid Lead Iodide Perovskite Single Crystalscitations
- 2015Photophysics of Organic-Inorganic Hybrid Lead Iodide Perovskite Single Crystalscitations
- 2015Inside Front Cover: Hybrid Perovskites: Photophysics of Organic–Inorganic Hybrid Lead Iodide Perovskite Single Crystals (Adv. Funct. Mater. 16/2015)citations
Places of action
Organizations | Location | People |
---|
article
Effects of strontium doping on the morphological, structural, and photophysical properties of FASnI(3) perovskite thin films
Abstract
Doping engineering has been an effective technique applied extensively to enrich semiconductors and modulate their fundamental properties for electronic and optoelectronic applications. In this work, we report the influence of strontium (Sr) doping on solution-processed formamidinium tin iodide (FASnI(3)) perovskite thin films. We show that the addition of the Sr2+ dopant to the host perovskite drastically changes the morphology of the material but has no significant effect on the structural phase for doping concentrations lower than 10%. Using photoluminescence spectroscopy, we showed that for doping contents below 15%, the film is heterogeneously doped and strontium predominantly resides at the surface of the film. Above 15% of Sr, the bulk of the material is significantly doped. Our results show that Sr doping into FASnI(3) perovskite can be a route for the attainment of new perovskites with interesting physical properties. (C) 2019 Author(s).