People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vermeulen, Paul. A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2019Multilevel reflectance switching of ultrathin phase-change filmscitations
- 2019Low temperature epitaxy of tungsten-telluride heterostructure filmscitations
- 2018Combining Ultrafast Calorimetry and Electron Microscopycitations
- 2016Crystallization Kinetics of Supercooled Liquid Ge-Sb Based on Ultrafast Calorimetrycitations
- 2014Reversible amorphous-crystalline phase changes in a wide range of Se1-xTex alloys studied using ultrafast differential scanning calorimetrycitations
Places of action
Organizations | Location | People |
---|
article
Multilevel reflectance switching of ultrathin phase-change films
Abstract
<p>Several design techniques for engineering the visible optical and near-infrared response of a thin film are explored. These designs require optically active and absorbing materials and should be easily grown on a large scale. Switchable chalcogenide phase-change material heterostructures with three active layers are grown here using pulsed laser deposition. Both Fabry-Perot and strong interference principles are explored to tune the reflectance. Robust multilevel switching is demonstrated for both principles using dynamic ellipsometry, and measured reflectance profiles agree well with simulations. We find, however, that switching the bottom layer of a three-layer device does not yield a significant change in reflectance, indicating a maximum in accessible levels. The pulsed laser deposition films grown show promise for optical display applications, with three shown reflectance levels. Published under license by AIP Publishing.</p>