Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kishimoto, Hidefumi

  • Google
  • 2
  • 10
  • 45

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Nanocrystalline soft magnetic materials from binary alloy precursors with high saturation magnetization43citations
  • 2018Low temperature texture development in Nd2Fe14B/<i>α</i>-Fe nanocomposite magnets via equal channel angular pressing2citations

Places of action

Chart of shared publication
Parsons, R.
1 / 2 shared
Zang, Bowen
1 / 2 shared
Onodera, K.
1 / 2 shared
Kato, A.
2 / 9 shared
Suzuki, K.
2 / 25 shared
Shoji, T.
1 / 5 shared
Molotnikov, A.
1 / 9 shared
Garitaonandia, J. S.
1 / 22 shared
Davies, C.
1 / 5 shared
Besley, L.
1 / 2 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • Parsons, R.
  • Zang, Bowen
  • Onodera, K.
  • Kato, A.
  • Suzuki, K.
  • Shoji, T.
  • Molotnikov, A.
  • Garitaonandia, J. S.
  • Davies, C.
  • Besley, L.
OrganizationsLocationPeople

article

Nanocrystalline soft magnetic materials from binary alloy precursors with high saturation magnetization

  • Parsons, R.
  • Zang, Bowen
  • Onodera, K.
  • Kato, A.
  • Suzuki, K.
  • Kishimoto, Hidefumi
  • Shoji, T.
Abstract

<jats:p>A brief survey of the recent advances in Fe-based nanocrystalline soft magnetic alloys has shown that the saturation magnetization (Js) of these alloys is governed by the mass fraction, rather than the atomic fraction, of the nonmagnetic additives. Thus, the ultimate limit of Js in the alloys prepared by nano-crystallization of amorphous precursors is expected in an Fe-B binary system where amorphization by rapid quenching takes place with the lowest mass fraction of glass forming elements in Fe-based systems. We will demonstrate that nano-crystallization is possible in this binary system when the precursor amorphous phase is annealed ultra-rapidly. While the grain size after conventional annealing for amorphous Fe-B alloys is too large for the exchange softening effect, a small grain size well below the exchange length is obtained after annealing with a heating rate of 103 – 104 K/s. This results in magnetically soft nanostructures with Fe content up to 97.2 wt. %, leading to a high Js ≥ 1.9 T with a small coercivity (Hc) between 3.8 and 6.4 A/m. An addition of Co to nc-Fe87B13 results in a higher Js of 2.0 T with a slight increase of Hc to 9.3 A/m. The soft magnetic properties of these ultra-rapidly annealed alloys (named HiB-Nanoperm) is well understood by the random anisotropy model. The formation of nano-meter scale microstructures in a simple binary system unlocks previously unavailable alloy design strategies in nanostructured systems which is not only relevant to magnetic materials but, also to structural materials.</jats:p>

Topics
  • impedance spectroscopy
  • amorphous
  • grain
  • grain size
  • phase
  • glass
  • glass
  • forming
  • annealing
  • random
  • magnetization
  • crystallization
  • saturation magnetization
  • quenching
  • coercivity