Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ranta, Sanna

  • Google
  • 2
  • 7
  • 29

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Thermophotonic cooling in GaAs based light emitters29citations
  • 2019Observation of local electroluminescent cooling and identifying the remaining challengescitations

Places of action

Chart of shared publication
Tiira, Jonna
2 / 3 shared
Oksanen, Jani
2 / 11 shared
Guina, Mircea
2 / 36 shared
Tukiainen, Antti
2 / 23 shared
Radevici, Ivan
2 / 7 shared
Sadi, Toufik
2 / 6 shared
Tripurari, Tripathi
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Tiira, Jonna
  • Oksanen, Jani
  • Guina, Mircea
  • Tukiainen, Antti
  • Radevici, Ivan
  • Sadi, Toufik
  • Tripurari, Tripathi
OrganizationsLocationPeople

article

Thermophotonic cooling in GaAs based light emitters

  • Tiira, Jonna
  • Ranta, Sanna
  • Oksanen, Jani
  • Guina, Mircea
  • Tukiainen, Antti
  • Radevici, Ivan
  • Sadi, Toufik
Abstract

| openaire: EC/H2020/638173/EU//iTPX ; Fundamental thermodynamic considerations reveal that efficient emission from an electrically injected light emitting diode (LED) can lead to the cooling of the device. This effect, known as electroluminescent (EL) cooling, has been identified decades ago, but it has not been experimentally demonstrated in semiconductors at practical operating conditions due to the extreme requirements set for the efficiency of the light emission. To probe the conditions of EL cooling in GaAs based light emitters, we have designed and fabricated LED structures with integrated photodiodes (PDs), where the optically mediated thermal energy transport between the LED and the PD can be easily monitored. This allows characterization of the fundamental properties of the LED and a path for eliminating selected issues encountered in conventional approaches for EL cooling, such as the challenging light extraction. Despite several remaining nonidealities, our setup demonstrates a very high directly measured quantum efficiency of 70%. To characterize the bulk part of the LED, we also employ a model for estimating the power conversion efficiency (PCE) of the LED, without the contribution of non-fundamental nonidealities such as photodetection losses. Our results suggest that the PCE of the LED peaks at around 105-115%, exceeding the 100% barrier required to reach the EL cooling regime by a clear margin. This implies that the LED component in our device is in fact cooling down by transporting thermal energy carried by the emitted photons to the PD. This provides a compelling incentive for further study to confirm the result and to find ways to extend it for practically useful EL cooling. ; Peer reviewed

Topics
  • impedance spectroscopy
  • extraction
  • semiconductor
  • power conversion efficiency