Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ojha, Shuchi

  • Google
  • 1
  • 9
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Thermal conductivity in self-assembled CoFe2O4/BiFeO3 vertical nanocomposite films7citations

Places of action

Chart of shared publication
Ross, Caroline A.
1 / 6 shared
Zhang, Chen
1 / 4 shared
Chen, Gang
1 / 6 shared
Pelliciari, Jonathan
1 / 4 shared
Nelson, Keith A.
1 / 4 shared
Huberman, Samuel C.
1 / 1 shared
Comin, Riccardo
1 / 10 shared
Ning, Shuai
1 / 4 shared
Duncan, Ryan A.
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Ross, Caroline A.
  • Zhang, Chen
  • Chen, Gang
  • Pelliciari, Jonathan
  • Nelson, Keith A.
  • Huberman, Samuel C.
  • Comin, Riccardo
  • Ning, Shuai
  • Duncan, Ryan A.
OrganizationsLocationPeople

article

Thermal conductivity in self-assembled CoFe2O4/BiFeO3 vertical nanocomposite films

  • Ross, Caroline A.
  • Zhang, Chen
  • Chen, Gang
  • Pelliciari, Jonathan
  • Nelson, Keith A.
  • Huberman, Samuel C.
  • Comin, Riccardo
  • Ning, Shuai
  • Ojha, Shuchi
  • Duncan, Ryan A.
Abstract

<jats:p>The thermal conductivity of self-assembled nanocomposite oxide films consisting of cobalt ferrite (CFO) spinel pillars grown within a single-crystal bismuth ferrite (BFO) perovskite matrix is described as a function of the volume fraction of the spinel. Single phase BFO and CFO had cross-plane thermal conductivities of 1.32 W m−1 K−1 and 3.94 W m−1 K−1, respectively, and the thermal conductivity of the nanocomposites increased with the CFO volume fraction within this range. A small increase (∼5%) in thermal conductivity for the pure CFO phase in the AC-demagnetized state was observed, suggesting possible magnon contributions. Steady state gray-medium based variance-reduced Monte Carlo simulations show consistent trends with experimental data on the dependence of thermal conductivity with the CFO volume fraction.</jats:p>

Topics
  • nanocomposite
  • perovskite
  • impedance spectroscopy
  • phase
  • simulation
  • cobalt
  • thermal conductivity
  • Bismuth