People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dyre, Jeppe C.
Roskilde University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Estimating melting curves for Cu and Al from simulations at a single state pointcitations
- 2022Rheological model for the alpha relaxation of glass-forming liquids and its comparison to data for DC704 and DC705citations
- 2021Does mesoscopic elasticity control viscous slowing down in glassforming liquids?citations
- 2021Effectively one-dimensional phase diagram of CuZr liquids and glassescitations
- 2021Generalized hydrodynamics of the Lennard-Jones liquid in view of hidden scale invariancecitations
- 2021Identity of the local and macroscopic dynamic elastic responses in supercooled 1-propanolcitations
- 2019Crystallization Instability in Glass-Forming Mixturescitations
- 2018ROSE bitumencitations
- 2017Model for the alpha and beta shear-mechanical properties of supercooled liquids and its comparison to squalane datacitations
- 2017Connection between fragility, mean-squared displacement and shear modulus in two van der Waals bonded glass-forming liquidscitations
- 2016Freezing and melting line invariants of the Lennard-Jones systemcitations
- 2015Communication: Direct tests of single-parameter agingcitations
- 2015A review of experiments testing the shoving modelcitations
- 2013Four-component united-atom model of bitumencitations
- 2013Mechanical spectra of glass-forming liquids. I. Low-frequency bulk and shear moduli of DC704 and 5-PPE measured by piezoceramic transducerscitations
- 2013Mechanical spectra of glass-forming liquids. II. Gigahertz-frequency longitudinal and shear acoustic dynamics in glycerol and DC704 studied by time-domain Brillouin scatteringcitations
- 2012‘‘Cooling by Heating’’- Demonstrating the Significance of the Longitudinal Specific Heatcitations
- 2007Hopping models for ion conduction in noncrystals
- 2006Elastic models for the non-Arrhenius viscosity of glass-forming liquidscitations
- 2004Glasses
- 2003Is there a "native" bandgap in ion conducting glasses?
- 2001Time-temperature superposition in viscous liquids
Places of action
Organizations | Location | People |
---|
article
ROSE bitumen
Abstract
We present a mesoscopic model for bitumen and bituminous mixtures. The model, which is based on dissipative particle dynamics, consists of different dynamical entities that represent the different characteristic time scales. Through the stress relaxation function, the mechanical properties of the model are investigated. For pure bitumen, the viscosity features super-Arrhenius behavior in the low-temperature regime in agreement with experimental data. The frequency-dependent viscoelastic properties show purely viscous behavior at low frequencies with increasing elasticity and hardening at higher frequencies, as expected. The model dynamics are analyzed in the framework of longitudinal hydrodynamics. The thermal process is two orders of magnitude slower than the attenuation of the density-wave propagation; hence the dynamic structure factoris dominated by a sharp Rayleigh peak and a relatively broad Brillouin peak. The model is applied to study triblock-copolymer-modified bitumen mixtures. Effects of the polymer concentration and end-block interactions with the bitumen are investigated. While the polymer concentration has an effect on the mechanical properties, the effect of increasing repulsive interactions between the bitumen and the polymer end-blocks is much more dramatic; it increases the viscosity of the mixture and shifts the onset of the elastic behavior to lower frequencies. For increased repulsion, the polymer end-blocks form small clusters that can be connected by a dynamic polymer backbone network. A simple Flory-Huggins analysis reveals the onset of segregation of the end-blocks in the bitumen mixture in agreement with the simulation data. Hence the changed mechanical properties are due to the emergence of large-scale structures as the repulsion is increased, which conforms to known mechanisms of microphase separation in polymer-modified bitumens.