Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rooij, A. L. La

  • Google
  • 1
  • 5
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Deposition and patterning of magnetic atom trap lattices in FePt films with periods down to 200 nm5citations

Places of action

Chart of shared publication
Vantomme, A.
1 / 15 shared
Couet, S.
1 / 11 shared
Temst, K.
1 / 9 shared
Krogt, M. C. Van Der
1 / 1 shared
Spreeuw, Robert
1 / 3 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Vantomme, A.
  • Couet, S.
  • Temst, K.
  • Krogt, M. C. Van Der
  • Spreeuw, Robert
OrganizationsLocationPeople

article

Deposition and patterning of magnetic atom trap lattices in FePt films with periods down to 200 nm

  • Vantomme, A.
  • Couet, S.
  • Temst, K.
  • Rooij, A. L. La
  • Krogt, M. C. Van Der
  • Spreeuw, Robert
Abstract

<p>We report on the epitaxial growth and the characterization of thin FePt films and the subsequent patterning of magnetic lattice structures. These structures can be used to trap ultracold atoms for quantum simulation experiments. We use molecular beam epitaxy to deposit monocrystalline FePt films with a thickness of 50 nm. The films are characterized with X-ray scattering and Mössbauer spectroscopy to determine the long range order parameter and the hard magnetic axes. A high monocrystalline fraction was measured as well as a strong remanent magnetization of M = 900 kA/m and coercivity of 0.4 T. Using electron beam lithography and argon ion milling, we create lattice patterns with a period down to 200 nm, and a resolution of 30 nm. The resulting lattices are imaged in a scanning electron microscope in the cross-section created by a focused ion beam. A lattice with continuously varying lattice constant ranging from 5 μm down to 250 nm has been created to show the wide range of length scales that can now be created with this technique.</p>

Topics
  • Deposition
  • experiment
  • simulation
  • grinding
  • milling
  • focused ion beam
  • magnetization
  • lithography
  • X-ray scattering
  • coercivity
  • Mössbauer spectroscopy