People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mohanty, Gaurav
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Tribological behavior and biocompatibility of novel Nickel-Free stainless steel manufactured via laser powder bed fusion for biomedical applicationscitations
- 2024Glass and nanocrystalline phase formation in CuZrAg alloyscitations
- 2024In-situ SEM micropillar compression and nanoindentation testing of SU-8 polymer up to 1000 s−1 strain ratecitations
- 2024Correlated high throughput nanoindentation mapping and microstructural characterization of wire and arc additively manufactured 2205 duplex stainless steelcitations
- 2023Effect of stiff substrates on enhancing the fracture resistance of Barium Titanate thin filmscitations
- 2023Evolution of alumina phase structure in thermal plasma processingcitations
- 2023Evolution of alumina phase structure in thermal plasma processingcitations
- 2023Wire arc additive manufacturing of thin and thick walls made of duplex stainless steelcitations
- 2023High-Entropy Carbides: Processing And Characterization
- 2022Effect of Welding Direction and Bead Pattern in Alloy 52 / SA508 Repair Weld
- 2022Multistage Reversible Tg Photomodulation and Hardening of Hydrazone-Containing Polymerscitations
- 2022Structural characterisation of Cu-Zr thin film combinatorial libraries with synchrotron radiation at the limit of crystallinitycitations
- 2022Dynamic cryo-mechanical properties of additively manufactured nanocrystalline nickel 3D microarchitecturescitations
- 2021Microscale fracture of chromia scalescitations
- 2021Multistage Reversible Tg Photomodulation and Hardening of Hydrazone-Containing Polymerscitations
- 2020Fiber push-in failure in carbon fiber epoxy compositescitations
- 2020Local mechanical properties at the dendrite scale of Ni-Based superalloys studied by advanced high temperature indentation creep and micropillar compression testscitations
- 2020A52M/SA52 Dissimilar Metal RPV Repair Weld:Experimental Evaluation and Post-Weld Characterizationscitations
- 2020A52M/SA52 Dissimilar Metal RPV Repair Weld : Experimental Evaluation and Post-Weld Characterizationscitations
- 2019Microscale fracture of chromia scalescitations
- 2019Novel high temperature vacuum nanoindentation system with active surface referencing and non-contact heating for measurements up to 800 °Ccitations
- 2019Deformation of lamellar γ-TiAl below the general yield stresscitations
- 2019Deformation of lamellar γ-TiAl below the general yield stresscitations
- 2018Longitudinal twinning in a TiAl alloy at high temperature by in situ microcompressioncitations
- 2018Interplay of stresses, plasticity at crack tips and small sample dimensions revealed by in-situ microcantilever tests in tungstencitations
- 2016Room temperature stress relaxation in nanocrystalline Ni measured by micropillar compression and miniature tensioncitations
- 2016Understanding the mechanical behaviour of fiber/matrix interfaces during push-in tests by means of finite element simulations and a cohesive zone modelcitations
- 2016Key-features in processing and microstructure for achieving giant electrostriction in gadolinium doped ceria thin filmscitations
- 2015A comparative transmission electron microscopy, energy dispersive x-ray spectroscopy and spatially resolved micropillar compression study of the yttria partially stabilised zirconia - porcelain interface in dental prosthesiscitations
- 2015Elevated temperature, strain rate jump microcompression of nanocrystalline nickelcitations
- 2015Microscale resolution fracture toughness profiling at the zirconia-porcelain interface in dental prosthesescitations
- 2014Image denoising techniques applied to glow discharge optical emission spectroscopy elemental mappingcitations
- 2014Use of radiofrequency power to enable glow discharge optical emission spectroscopy ultrafast elemental mapping of combinatorial libraries with nonconductive components: nitrogen-based materialscitations
Places of action
Organizations | Location | People |
---|
article
Novel high temperature vacuum nanoindentation system with active surface referencing and non-contact heating for measurements up to 800 °C
Abstract
<p>High temperature nanoindentation is an emerging field with significant advances in instrumentation, calibration, and experimental protocols reported in the past couple of years. Performing stable and accurate measurements at elevated temperatures holds the key for small scale testing of materials at service temperatures. We report a novel high temperature vacuum nanoindentation system, High Temperature Ultra Nanoindentation Tester (UNHT<sup>3</sup>HTV), utilizing active surface referencing and non-contact heating capable of performing measurements up to 800 °C. This nanoindenter is based on the proven Ultra Nano-Hardness Tester (UNHT) design that uses two indentation axes: one for indentation and another for surface referencing. Differential displacement measurement between the two axes enables stable measurements to be performed over long durations. A vacuum level of 10<sup>−7</sup>mbar prevents sample surface oxidation at elevated temperatures. The indenter, reference, and sample are heated independently using integrated infrared heaters. The instrumental design details for developing a reliable and accurate high temperature nanoindenter are described. High temperature calibration procedures to minimize thermal drift at elevated temperatures are reported. Indentation data on copper, fused silica, and a hard coating show that this new generation of instrumented indenter can achieve unparalleled stability over the entire temperature range up to 800 °C with minimum thermal drift rates of <2 nm/min at elevated temperatures.</p>