Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sairam, K.

  • Google
  • 11
  • 30
  • 151

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2018Microstructure, thermo-physical, mechanical and wear properties of in-situ formed boron carbide -Zirconium diboride composite27citations
  • 2018ZrB2 based novel composite with NiAl as reinforcement phase18citations
  • 2018Tribology study on TiB2+WSi2 composite against WC9citations
  • 2018Densification, Microstructural Evolution, Mechanical Properties and Oxidation Study of CrB2 + EuB6 Composite7citations
  • 2017Wear behaviour of CrB2 + 5 wt.% MoSi2 composite against cemented tungsten carbide (WC-Co) under dry reciprocative sliding condition10citations
  • 2017Scratch Testing of Hot-Pressed Monolithic Chromium Diboride (CrB2) and CrB2 + MoSi2 Composite8citations
  • 2017Development and tribological properties of SiC fibre reinforced CrB2 composite11citations
  • 2017Scratch Testing of Hot-Pressed Monolithic Chromium Diboride (CrB2) and CrB2 + MoSi2 Composite8citations
  • 2016Tribological studies of monolithic chromium diboride against cemented tungsten carbide (WC–Co) under dry condition27citations
  • 2016Pressureless sintering of chromium diboride using spark plasma sintering facility14citations
  • 2016Effect of TiSi2 addition on densification of Cerium hexaboride12citations

Places of action

Chart of shared publication
Singh, Kulwant
2 / 5 shared
Sonber, J. K.
9 / 9 shared
Majumdar, Sanjib
2 / 4 shared
Bedse, R. D.
3 / 3 shared
Kain, Vivekanand
5 / 6 shared
Sengupta, P.
1 / 2 shared
Nagaraj, A.
5 / 6 shared
Ankata, Sairam
1 / 1 shared
Majumdar, S.
3 / 25 shared
Kain, V.
3 / 12 shared
Rao, G. V. S. Nageswara
3 / 4 shared
Singh, K.
5 / 18 shared
Basha, M. M.
1 / 1 shared
Raju, K.
2 / 14 shared
Rao, G. V. S. Nageswar
1 / 1 shared
Bhatt, B.
4 / 7 shared
Sashanka, A.
4 / 4 shared
Rao, T. Srinivasa
2 / 3 shared
K., Sonber J.
2 / 2 shared
S., Nageswara Rao G. V.
1 / 1 shared
C., Murthy T. S. R.
2 / 2 shared
Srinivasa Rao, T.
1 / 1 shared
Vishwanadh, B.
2 / 5 shared
Nagraj, A.
1 / 1 shared
K., Limaye P.
1 / 1 shared
S., Rao T.
1 / 1 shared
N., Rao G. V. S.
1 / 1 shared
Sahu, A. K.
1 / 2 shared
Chakravartty, J. K.
2 / 5 shared
Paul, B.
1 / 7 shared
Chart of publication period
2018
2017
2016

Co-Authors (by relevance)

  • Singh, Kulwant
  • Sonber, J. K.
  • Majumdar, Sanjib
  • Bedse, R. D.
  • Kain, Vivekanand
  • Sengupta, P.
  • Nagaraj, A.
  • Ankata, Sairam
  • Majumdar, S.
  • Kain, V.
  • Rao, G. V. S. Nageswara
  • Singh, K.
  • Basha, M. M.
  • Raju, K.
  • Rao, G. V. S. Nageswar
  • Bhatt, B.
  • Sashanka, A.
  • Rao, T. Srinivasa
  • K., Sonber J.
  • S., Nageswara Rao G. V.
  • C., Murthy T. S. R.
  • Srinivasa Rao, T.
  • Vishwanadh, B.
  • Nagraj, A.
  • K., Limaye P.
  • S., Rao T.
  • N., Rao G. V. S.
  • Sahu, A. K.
  • Chakravartty, J. K.
  • Paul, B.
OrganizationsLocationPeople

document

Tribology study on TiB2+WSi2 composite against WC

  • Rao, G. V. S. Nageswara
  • Sonber, J. K.
  • Singh, K.
  • Majumdar, S.
  • Kain, Vivekanand
  • Nagaraj, A.
  • Basha, M. M.
  • Sairam, K.
  • Raju, K.
Abstract

<p>Titanium diboride (TiB<sub>2</sub>) is one of the potential material for green energy applications such as neutron absorber in high temperature/advanced nuclear reactors, receiver materials for second generation concentrated solar power. We developed the process flow sheet for synthesis and consolidation of various series of TiB<sub>2</sub> based materials in our laboratory. Amongst these, TiB<sub>2</sub>+WSi<sub>2</sub> exhibited better sinterability and oxidation resistance properties. In the present work, tribology properties of TiB<sub>2</sub>+2.5%WSi<sub>2</sub> composite was studied against WC-Co ball using different normal loads (5, 10 and 20 N) and frequencies (10, 15 Hz) under dry condition. Coefficient of friction (COF) and wear rate was measured at all test conditions. Wear mechanism was analyzed by microstructural characterization. It was found that COF is decreased from 0.46 to 0.36 with increasing load (5 to 20 N) at 15 Hz frequency; whereas at 10 Hz frequency COF is measured a constant average value of 0.49. The specific wear rate measured was minimum at 5 N load and 15 Hz frequency combination and was found to be 2.84×10<sup>-6</sup> mm<sup>3</sup>/N m. The wear mechanisms identified during reciprocative sliding wear of composite were abrasion and surface tribo-oxidative reactions with delamination from tribo-zone.</p>

Topics
  • impedance spectroscopy
  • surface
  • composite
  • titanium
  • coefficient of friction