People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Timm, Rainer
Lund University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Ferroelectricity in Ultrathin HfO2-Based Films by Nanosecond Laser Annealingcitations
- 2023Bimolecular Reaction Mechanism in the Amido Complex-Based Atomic Layer Deposition of HfO2citations
- 2023A 2D Bismuth-Induced Honeycomb Surface Structure on GaAs(111)citations
- 2023A 2D Bismuth-Induced Honeycomb Surface Structure on GaAs(111)citations
- 2023Low temperature atomic hydrogen annealing of InGaAs MOSFETscitations
- 2023Time evolution of surface species during the ALD of high-k oxide on InAscitations
- 2023Time evolution of surface species during the ALD of high-k oxide on InAscitations
- 2022Oxygen relocation during HfO2 ALD on InAscitations
- 2022Nanometric Moiré Stripes on the Surface of Bi2Se3Topological Insulatorcitations
- 2022Role of Temperature, Pressure, and Surface Oxygen Migration in the Initial Atomic Layer Deposition of HfO2on Anatase TiO2(101)citations
- 2022Role of Temperature, Pressure, and Surface Oxygen Migration in the Initial Atomic Layer Deposition of HfO2on Anatase TiO2(101)citations
- 2021Tuning oxygen vacancies and resistive switching properties in ultra-thin HfO 2 RRAM via TiN bottom electrode and interface engineeringcitations
- 2021Inducing ferroelastic domains in single-crystal CsPbBr3 perovskite nanowires using atomic force microscopycitations
- 2021Inducing ferroelastic domains in single-crystal CsPbBr3 perovskite nanowires using atomic force microscopycitations
- 2021Tuning oxygen vacancies and resistive switching properties in ultra-thin HfO2 RRAM via TiN bottom electrode and interface engineeringcitations
- 2020Atomic Layer Deposition of Hafnium Oxide on InAs : Insight from Time-Resolved in Situ Studiescitations
- 2020Atomic Layer Deposition of Hafnium Oxide on InAscitations
- 2019GaN nanowires as probes for high resolution atomic force and scanning tunneling microscopycitations
- 2018Self-assembled InN quantum dots on side facets of GaN nanowirescitations
- 2018InAs-oxide interface composition and stability upon thermal oxidation and high-k atomic layer depositioncitations
- 2017Crystal Structure Induced Preferential Surface Alloying of Sb on Wurtzite/Zinc Blende GaAs Nanowirescitations
- 2015Electrical and Surface Properties of InAs/InSb Nanowires Cleaned by Atomic Hydrogencitations
- 2015Surface morphology of Au-free grown nanowires after native oxide removal.citations
- 2013Epitaxial growth and surface studies of the Half Heusler compound NiTiSn (001)citations
- 2013Interface characterization of metal-HfO2-InAs gate stacks using hard x-ray photoemission spectroscopy
- 2012Al2O3/InAs metal-oxide-semiconductor capacitors on (100) and (111)B substratescitations
- 2011Interface composition of atomic layer deposited HfO2 and Al2O3 thin films on InAs studied by X-ray photoemission spectroscopycitations
- 2011Doping profile of InP nanowires directly imaged by photoemission electron microscopycitations
Places of action
Organizations | Location | People |
---|
article
Self-assembled InN quantum dots on side facets of GaN nanowires
Abstract
Self-assembled, atomic diffusion controlled growth of InN quantum dots was realized on the side facets of dislocation-free and c-oriented GaN nanowires having a hexagonal cross-section. The nanowires were synthesized by selective area metal organic vapor phase epitaxy. A 3 Å thick InN wetting layer was observed after growth, on top of which the InN quantum dots formed, indicating self-assembly in the Stranski-Krastanow growth mode. We found that the InN quantum dots can be tuned to nucleate either preferentially at the edges between GaN nanowire side facets, or directly on the side facets by tuning the adatom migration by controlling the precursor supersaturation and growth temperature. Structural characterization by transmission electron microscopy and reciprocal space mapping show that the InN quantum dots are close to be fully relaxed (residual strain below 1%) and that the c-planes of the InN quantum dots are tilted with respect to the GaN core. The strain relaxes mainly by the formation of misfit dislocations, observed with a periodicity of 3.2 nm at the InN and GaN hetero-interface. The misfit dislocations introduce I1 type stacking faults (.ABABCBC.) in the InN quantum dots. Photoluminescence investigations of the InN quantum dots show that the emissions shift to higher energy with reduced quantum dot size, which we attribute to increased quantum confinement.