People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Boulle, Olivier
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2018Thermal Contribution to the Spin-Orbit Torque in Metallic-Ferrimagnetic Systemscitations
- 2018Large-Voltage Tuning of Dzyaloshinskii–Moriya Interactions: A Route toward Dynamic Control of Skyrmion Chiralitycitations
- 2018Spin-orbit torque-induced switching in ferrimagnetic alloys: Experiments and modelingcitations
- 2018Controlling Dzyaloshinskii-Moriya Interaction via Chirality Dependent Atomic-Layer Stacking, Insulator Capping and Electric Fieldcitations
- 2018Magnetic skyrmions in confined geometries: Effect of the magnetic field and the disordercitations
- 2016Domain wall dynamics in ultrathin Pt/Co/AlOx microstrips under large combined magnetic fieldscitations
- 2015Chiral damping of magnetic domain wallscitations
- 2008Direct imaging of current-induced domain wall motion in CoFeB structurescitations
Places of action
Organizations | Location | People |
---|
article
Spin-orbit torque-induced switching in ferrimagnetic alloys: Experiments and modeling
Abstract
<jats:p>We investigate spin-orbit torque (SOT)-induced switching in rare-earth-transition metal ferrimagnetic alloys using W/CoTb bilayers. The switching current is found to vary continuously with the alloy concentration, and no reduction in the switching current is observed at the magnetic compensation point despite a very large SOT efficiency. A model based on coupled Landau-Lifschitz-Gilbert (LLG) equations shows that the switching current density scales with the effective perpendicular anisotropy which does not exhibit strong reduction at the magnetic compensation, explaining the behavior of the switching current density. This model also suggests that conventional SOT effective field measurements do not allow one to conclude whether the spins are transferred to one sublattice or just simply to the net magnetization. The effective spin Hall angle measurement shows an enhancement of the spin Hall angle with the Tb concentration which suggests an additional SOT contribution from the rare earth Tb atoms.</jats:p>