People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rojas-Sánchez, Juan-Carlos
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Controlling the helicity of light by electrical magnetization switchingcitations
- 2023Spin-to-charge conversion by spin pumping in sputtered polycrystalline Bi x Se 1 − xcitations
- 2023Spin transport properties of spinel vanadate-based heterostructurescitations
- 2022Spin-to-charge conversion by spin pumping in sputtered polycrystalline Bi$_x$Se$_{1-x}$
- 2022Thermal Spin-Current Generation in the Multifunctional Ferrimagnet Ga 0.6 Fe 1.4 O 3citations
- 2021Spin current transport in hybrid Pt / multifunctional magnetoelectric Ga0.6Fe1.4O3 bilayerscitations
- 2021Current‐Induced Spin Torques on Single GdFeCo Magnetic Layerscitations
- 2020Ultrafast spin-currents and charge conversion at 3d-5d interfaces probed by time-domain terahertz spectroscopycitations
- 2019Strain-Enhanced Charge-to-Spin Conversion in Ta/Fe/Pt Multilayers Grown on Flexible Mica Substratecitations
- 2018Spin-orbit torque-induced switching in ferrimagnetic alloys: Experiments and modelingcitations
Places of action
Organizations | Location | People |
---|
article
Spin-orbit torque-induced switching in ferrimagnetic alloys: Experiments and modeling
Abstract
<jats:p>We investigate spin-orbit torque (SOT)-induced switching in rare-earth-transition metal ferrimagnetic alloys using W/CoTb bilayers. The switching current is found to vary continuously with the alloy concentration, and no reduction in the switching current is observed at the magnetic compensation point despite a very large SOT efficiency. A model based on coupled Landau-Lifschitz-Gilbert (LLG) equations shows that the switching current density scales with the effective perpendicular anisotropy which does not exhibit strong reduction at the magnetic compensation, explaining the behavior of the switching current density. This model also suggests that conventional SOT effective field measurements do not allow one to conclude whether the spins are transferred to one sublattice or just simply to the net magnetization. The effective spin Hall angle measurement shows an enhancement of the spin Hall angle with the Tb concentration which suggests an additional SOT contribution from the rare earth Tb atoms.</jats:p>