Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fritz, Bertram

  • Google
  • 1
  • 7
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Influence of compounding technology on rheological, thermal and mechanical behavior of blast furnace slag filled polystyrene compoundscitations

Places of action

Chart of shared publication
Holzer, Clemens
1 / 65 shared
Lucyshyn, Thomas
1 / 10 shared
Laske, Stephan
1 / 2 shared
Krischey, Elke
1 / 1 shared
Flachberger, Helmut
1 / 1 shared
Pacher, Gernot A.
1 / 1 shared
Mostafa, Abdelhamid
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Holzer, Clemens
  • Lucyshyn, Thomas
  • Laske, Stephan
  • Krischey, Elke
  • Flachberger, Helmut
  • Pacher, Gernot A.
  • Mostafa, Abdelhamid
OrganizationsLocationPeople

article

Influence of compounding technology on rheological, thermal and mechanical behavior of blast furnace slag filled polystyrene compounds

  • Holzer, Clemens
  • Lucyshyn, Thomas
  • Laske, Stephan
  • Fritz, Bertram
  • Krischey, Elke
  • Flachberger, Helmut
  • Pacher, Gernot A.
  • Mostafa, Abdelhamid
Abstract

The influence of melt-compounding technique on blast furnace slags (BFS) filled polystyrene (PS) compounds was investigated. BFS are byproducts of iron industry, and are formed during the production of iron via thermo-chemical reduction in blast furnaces. BFS are mineral-structured materials composed of severeal such as silicon oxide (SiO2), calcium oxide (CaO), magnesium oxide (MgO) and alumina (Al2O3) as well as other minor oxides and elements. Such combination of oxides might be of technical advantage if BFS is properly prepared and tailored for use as a functional filler for PS. In addition, BFS is outstandingly inexpensive and require minimal refining costs compared to common mineral fillers used in polymer industry such as calcium carbonate and talc, giving BFS an economic significance. In current study, compounds were produced via melt-compounding approach, where two different processing technologies were used: (1) Laboratory rotor-blade internal mixer (IM) and (2) co-rotating, twin-screw compounding extruder (TSC). It was found that compounding process did not yield a strong influence on the rheological properties, where comparable levels for shear viscosity, storage- and loss moduli were observed for all compounds except for ‘20G40 TSC’ compound. Such deviancy was clear in thermal properties of this particular compound, where slightly lower transition temperature (Tg) as well as higher specific heat capacity (Cp) were reported. For mechanical behavior, comparable stress-strain curves and young’s modulus values for both processes were witnessed. Deviant ‘20G40 TSC’ compound showed slightly lower young’s modulus compared to corresponding IM.

Topics
  • impedance spectroscopy
  • mineral
  • compound
  • polymer
  • Magnesium
  • Magnesium
  • melt
  • stress-strain curve
  • viscosity
  • thermogravimetry
  • Silicon
  • iron
  • Calcium
  • heat capacity
  • specific heat
  • magnesium oxide