People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arif, Muhammad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024DPI_CDF: druggable protein identifier using cascade deep forestcitations
- 2024Unified mRNA Subcellular Localization Predictor based on machine learning techniquescitations
- 2023Photocatalytic Reduction of Cr(VI) to Cr(III) and Photocatalytic Degradation of Methylene Blue and Antifungal Activity of Ag/TiO2 Composites Synthesized via the Template Induced Routecitations
- 2023Association of GSTTI, M1 and Polymorphism in GSTPI with Chronic Periodontal Disease in a Pakistani Populationcitations
- 2022Process parameter optimization for Fused Filament Fabrication additive manufacturing of PLA/PHA biodegradable polymer blendcitations
- 2018Effect of surfactant concentration in electrolyte on the fabrication and properties of nickel-graphene nanocomposite coating synthesized by electrochemical co-depositioncitations
- 2018Increased interference fringe visibility from the post-fabrication heat treatment of a perfect crystal silicon neutron interferometer
- 2017Increased interference fringe visibility from the post fabrication heat treatment of a perfect crystal silicon neutron interferometercitations
Places of action
Organizations | Location | People |
---|
document
Increased interference fringe visibility from the post fabrication heat treatment of a perfect crystal silicon neutron interferometer
Abstract
Construction of silicon neutron interferometers requires a perfect crystal silicon ingot (5 cm to 30 cm long) be machined such that Bragg diffracting "blades" protrude from a common base. Leaving the interferometer blades connected to the same base preserves Bragg plane alignment, but if the interferometer contains crystallographic misalignments of greater than about 10 nrad between the blades, interference fringe visibility begins to suffer. Additionally, the parallelism, thickness, and distance between the blades must be machined to micron tolerances. Traditionally, interferometers do not exhibit usable interference fringe visibility until 30 m to 60 m of machining surface damage is chemically etched away. However, if too much material is removed, the uneven etch rates across the interferometer cause the shape of the crystal blades to be outside of the required tolerances. As a result, the ultimate interference fringe visibility varies widely among neutron interferometers that are created under similar conditions. We find that annealing a previously etched interferometer at $800^ {C}$ dramatically increased interference fringe visibility from 23 % to 90 %. The Bragg plane misalignments were also measured before and after annealing using neutron rocking curve interference peaks, showing that Bragg plane alignment was improved across the interferometer after annealing. This suggests that current interferometers with low fringe visibility may be salvageable and that annealing may become an important step in the fabrication process of future neutron interferometers, leading to less need for chemical etching and larger, more exotic neutron interferometers.