Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Conway, Alastair

  • Google
  • 3
  • 9
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020A study on microstructural evolution in cold rotary forged nickel-superalloys4citations
  • 2017A novel methodology for in-process monitoring of flow forming2citations
  • 2017On the specifics of modelling of rotary forging processescitations

Places of action

Chart of shared publication
Lalvani, Himanshu
1 / 9 shared
Tuffs, Martin
1 / 2 shared
Watt, Kyle
1 / 1 shared
Appleby, Andrew
1 / 1 shared
Ion, William
1 / 14 shared
Muir, Lisa
1 / 2 shared
Blackwell, Paul
1 / 41 shared
Krishnamurthy, Bhaskaran
1 / 3 shared
Bylya, Olga
1 / 13 shared
Chart of publication period
2020
2017

Co-Authors (by relevance)

  • Lalvani, Himanshu
  • Tuffs, Martin
  • Watt, Kyle
  • Appleby, Andrew
  • Ion, William
  • Muir, Lisa
  • Blackwell, Paul
  • Krishnamurthy, Bhaskaran
  • Bylya, Olga
OrganizationsLocationPeople

article

A novel methodology for in-process monitoring of flow forming

  • Conway, Alastair
  • Appleby, Andrew
  • Ion, William
Abstract

Flow forming (FF) is an incremental cold working process with near-net-shape forming capability. Failures by fracture due to high deformation can be unexpected and sometimes catastrophic, causing tool damage. If process failures can be identified in real time, an automatic cut-out could prevent costly tool damage. Sound and vibration monitoring is well established and commercially viable in the machining sector to detect current and incipient process failures, but not for FF. A broad-frequency microphone was used to record the sound signature of the manufacturing cycle for a series of FF parts. Parts were flow formed using single and multiple passes, and flaws were introduced into some of the parts to simulate the presence of spontaneously initiated cracks. The results show that this methodology is capable of identifying both introduced defects and spontaneous failures during flow forming. Further investigation is needed to categorise and identify different modes of failure and identify further potential applications in rotary forming.

Topics
  • impedance spectroscopy
  • crack
  • forming