People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zuelli, Nicola
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2019A state of the art review of hydroforming technologycitations
- 2018Studies on Ti54M Titanium Alloy for Application within the Aerospace Industry
- 2018Enabling sheet hydroforming to produce smaller radii on aerospace nickel alloyscitations
- 2018Studies on titanium alloys for aerospace applicationcitations
- 2018Studies on titanium alloys for aerospace applicationcitations
- 2017Correlation between von Mises strain and material thinning in a hydroformed sample of Ti35A aerospace grade titaniumcitations
- 2017Manufacture of a four-sheet complex component from different titanium alloys by superplastic forming
- 2017A comparative study assessing the wear behaviour of different ceramic die materials during superplastic formingcitations
- 2017Protective coatings for ceramic superplastic forming diescitations
- 2016Protective coatings for superplastic forming ceramic dies
- 2016Feasibility study of complex sheet hydroforming processcitations
Places of action
Organizations | Location | People |
---|
article
Manufacture of a four-sheet complex component from different titanium alloys by superplastic forming
Abstract
A superplastic forming (SPF) technology process was deployed to form a complex component with eight-pocket from a four-sheet sandwich panel sheetstock. Six sheetstock packs were composed of two core sheets made of Ti-6Al-4V or Ti-5Al-4Cr-4Mo-2Sn-2Zr titanium alloy and two skin sheets made of Ti-6Al-4V or Ti-6Al-2Sn-4Zr-2Mo titanium alloy in three different combinations. The sheets were welded with two subsequent welding patterns over the core and skin sheets to meet the required component’s details. The applied welding methods were intermittent and continuous resistance seam welding for bonding the core sheets to each other and the skin sheets over the core panel, respectively. The final component configuration was predicted based on the die drawings and finite element method (FEM) simulations for the sandwich panels. An SPF system set-up with two inlet gas pipe feeding facilitated the trials to deliver two pressure-time load cycles acting simultaneously which were extracted from FEM analysis for specific forming temperature and strain rate. The SPF pressure-time cycles were optimized via GOM scanning and visually inspecting some sections of the packs in order to assess the levels of core panel formation during the inflation process of the sheetstock. Two sets of GOM scan results were compared via GOM software to inspect the surface and internal features of the inflated multisheet packs. The results highlighted the capability of the tested SPF process to form complex components from a flat multisheet pack made of different titanium alloys.